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Abstract

Power load forecasting plays a critical role in energy economy development
and distribution of power systems. Predicting medium and long term power
loads have facilitated the development of power grids. In this paper, a
stacked-gated recurrent unit (Stacked-GRU) is applied to establish a power
load forecasting model by integrating economic factors. Meanwhile, it also
conducts medium and long term power load (MLTPL) forecasting based on
the power load data of Yunnan Province from 2009 to 2020. By comparing
different optimizers, it is found that the Adam optimizer works the best on
the Stacked-GRU architecture. In the experiment of medium and long term
power load forecasting for Yunnan Province, the values of MAPE, RMSE,
and MAE of the model are 9.76%, 1.412, and 1.14, respectively, all of which
outperform other deep learning comparison algorithms.
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1 Introduction

Yunnan Province is rich in power resources. By the end of 2020, the
province’s installed capacity of power generation was about 103.4028 million
kilowatts. Among them, the clean electricity accounts for more than 80%, and
the installed capacity of thermal power accounts for about 15% [1].

Electric power load data has the characteristics of periodicity, which can
be divided into daily periodicity, weekly periodicity and annual periodicity.
Among them, the annual periodicity of load data is closely related to seasonal
factors [2]. According to the time-division of power load forecasting, it can
be divided into super short-term, short-term, medium-term, and long-term.
The medium and long term power load (MLTPL) forecasting are instructive
in guiding power grid planning department and helping analyze the status quo
of power grid and predict saturated load [3]. Accurate MLTPL forecasting
can not only support economic activities actitivities by providing a guide for
the safe operation of power grid, but also improve the quality of power grid
planning [4].

In recent years, scholars have proposed various solutions to obtain high-
precision results of MLTPL forecasting. Some are listed as below:

(1) Traditional forecasting methods, such as linear regression [5, 6], least
squares method [7], exponential smoothing method [8, 9], etc. These
methods are based on statistical correlation principles to build predictive
models. All the methods are quick and direct in forecast. However, these
methods are less effective on nonlinear data [10].

(2) Machine learning methods, such as long short-term memory unit
(LSTM) [11], random forest algorithm [12], and temporal convolutional
network [13] are more powerful and have been used to predict power
load.

(3) Methods of model combination, such as power load forecasting model
integrated LSTM and eXtreme Gradient Boosting [14], chaotic spar-
row search algorithm (CSSA), optimization and firefly algorithm (FA),
improved extreme learning machine (ELM) [15], convolutional neural
network (CNN) combined with LSTM [16], GRU-based CNN and CNN
Hybrid Neural Network Model [17].

Power load is comprehensively affected by various factors (economy,
weather, population, traffic, etc.). Therefore, in the process of designing the
power load forecasting model, we should fully consider these influencing
factors [18]. Economic and social factors are studied by many researchers
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[19–21]. Liu D et al. [21] proposed a random forest algorithm which inte-
grates integrats economic factors, and uses the electricity load data of China.
Compared to using electricity data alone, the model was 15% more accurate.
Ghanbari A et al. [22] proposed a model integrating two economic factors,
GDP and population, and is applied to the annual electricity load data of Iran.

Inspired by these methods, we put forward a power load forecasting
model that integrates economic factors. In this paper, a stacked-gated recur-
rent neural network (RNN) is applied to model the MLTPL data in Yunnan
Province. The two indicators of the year-end total population of Yunnan
Province and the GDP of Yunnan Province are regarded as external factors in
the power load forecasting model.

2 The Theory of Deep Learning

2.1 Gated RNN

Gated Recurrent Units (GRU) is an optimized model derived from classical
neural recurrent networks [23–25]. GRU can alleviate some of the problems
in traditional neural networks, such as exploding or vanishing gradients.
GRU’s architecture contributes to its efficient computing performance [26].
The gated recurrent neural unit in GRU contains a reset gate r and an update
gate z and LSTM-like output gates are removed. The update gate decides
how much past information will be fed into future, and the larger the value,
the greater grater the previous state information is pereserved. The reset gate
mainly determines how much past information needs to be forgotten. The
smaller the value, the more the previous state is forgotten. In addition, gated
recurrent neural units merge the LSTM’s memory cell states and hidden layer
node outputs. The structure diagram of the GRU is shown below.

The complete update process of the gated recurrent neural unit is shown
in formulas (1)–(4):

(1) Reset gate
Rt = σ(Wr · [Ht−1, xt] + br) (1)

(2) Update gate
Zt = σ(Wz · [Ht−1, xt] + bz) (2)

(3) Candidate hidden layer states

H̃t = tanh(Wh̃ · [Rt �Ht−1, xt] + bh) (3)
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Figure 1 The structure diagram of GRU.

(4) The state of the hidden layer at time t

Ht = (1− Zt)� H̃t + Zt �Ht−1 (4)

Among them, xt stands for the value of the model input at time t. Ht−1

represents the state of the model at the last moment. Ht represents the state
of the model at the current moment. Rt and Zt represent the state of the
reset gate and update gate at the current moment. A higher Zt value, which
ranges from 0 to 1, means a higher percentage of state information will be
remembered and vicevise versa. H̃t represents the state of the candidate layer
at the current moment. Wr,Wz,Wh̃, br, bz and bh are weights and biases.

2.2 Stacked Gated RNNs

The overall architecture of long-term grid load forecasting model is shown
in the figure below. After the power load data is normalized, the power load
data, the year-end total population data of Yunnan Province, and the GDP
of Yunnan Province in the same period are input into Stacked-GRU model,
where network parameters W and b are optimized.

GRU is a shallow model with relatively weak feature extraction power.
We stack multiple layers of GRUs to form a deeper network (as shown in
Figure 3) to enhance model’s feature extraction capability.

3 Power Load Forecasting Based on Stacked-GRU

3.1 Data Description

The GDP and population data of Yunnan Province involved in this article
are obtained from “Yunnan province statistical yearbook” [27] and monthly
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Figure 2 Stacked-GRU model.

statistical report data [28] on the official website of Yunnan Provincial Bureau
of Statistics. The power load data of Yunnan Province ranges from January
of 2009 to December of 2020 and consists of two parts: (1) monthly social
electricity consumption of Yunnan Province, and (2) monthly electricity
consumption data of cities and autonomous prefectures in Yunnan Province.

80% of the data set is used as the training set, and the remaining 20% is
used as the test set. Data processing flow is presented in Figure 4.

3.2 Data Preprocessing

A linear normalization method is adopted, as shown in Equation (5).

Xnom =
X −Xmin

Xmax −Xmin
(5)
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Figure 3 Detailed structure of Stacked-GRU model.

Where Xnom is the normalized power load data or economic data. X
stands for the original data. Xmin represents the minimum value of the data
and Xmax refers to the maximum value.

3.3 Evaluation Method for Forecast

This paper uses three indicators to evaluate forecast algorithmalrithm: Mean
Absolute Error (MAE) [29], Mean Absolute Percentage Error (MAPE) [30],
and Root Mean Squared Error (RMSE) [31]. The calculations are presented
as follows.

MAE is a linear score that infer the mean of absolute error between
output value and observed value, where all individual differences are equally
weighted.

MAE =
1

n

n∑
i=1

|ŷi − yi| (6)
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Figure 4 Data processing flowchart.

MAPE refers to the ratio of the difference between observed value and
model output value to the absolute values of all observations.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (7)

RMSE is the square root of the ratio of the square of the deviation between
the model output value and the observed value to the number of observations,
which is sensitive to outliers in a data set.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (8)
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Table 1 Comparison of Adam and other optimizers
Optimizer Name The Best MAPE (%)
Adam 1.032
Adagrad 1.58
RMSPorp 3.207
SGD 26.78

Figure 5 Consumption curve predicted using Stacked-GRU.

3.4 Model Optimizer Selection

There are many optimizers for deep learning. It takes trial and error to
determine which optimizer to choose. In this study, we choose four common
optimizers, namely Adam, Adagrad, RMSPorp, and SGD, to run on the
Stacked-GRU model to conduct comparative experiments on the MLTPL data
in Yunnan Province.

We use MAPE as metric for the model optimizer, given that MAPE is a
relative error measure and is suitable for the comparison task on the accuracy
of different time series based forecasting models.

Experiments show that the model with Adam optimizer performs the best
among all four optimizers and the results can be seen in Table 1.

3.5 Performance on Test Set

We run the trained Stacked-GRU model on test set to verify its effectiveness.
The test set used in this paper is the power load data of Yunnan Province
from 2009 to 2020. As shown in Figure 5, the power consumption data after
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Figure 6 Yunnan province’s power forecasting compare with other model.

year 2020 was satisfactorily predicted, including the sudden steepening of the
power consumption curve at the beginning of year 2020.

To verify the effectiveness of the model, comparative experiments are
carried out by using ARIMA, LSTM and GRU methods. The experimental
results show that our model has the best effect on data set.

4 Conclusion

Based on the power load data of Yunnan Province from 2009 to 2020,
a medium and long term power load forecasting model is designed and
tested. The main innovations of this work includes: (1) a neural network
architecture based on Stacked-GRU is proposed for medium and long term
load forecasting; (2) forecasting model’s input is designed by incorporating
social and economic factors of regional GDP and population. In addition, we
have proved through comparative experiments that Adam optimizer works
the best on the Stacked-GRU model than other optimizers do. Taking MAPE,
RMSE and MAE as evaluation metrics, the experimental results show that
the proposed model outperforms other deep learning methods on the task of
power load forecasting in Yunnan Province.

Since we can only download annual or monthly power load data from the
public websites of Yunnan Provincial Bureau of Statistics and the National
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Bureau of Statistics, there are limitations in data acquisition and data com-
pleteness. At the same time, some unquantifiable factors, such as government
policies and emergencies, will also disturb power load forecast. Therefore,
future work needs to be done to extend data acquisition channel and to con-
sider more social and economic ecomonic factors, so as to improve prediction
accuracy at data level.

If more fine-grained power consumption data at city level can be obtained,
the spatial relationship of power consumption can then be mined. With the
improvement of power consumption perception based on spatial relationship,
one can expect a more accurate prediction of power consumption on a smaller
region in Yunnan Province.
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