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Abstract

Excessive carbon emissions will lead to catastrophic consequences such as
global warming and rising oceans and will also have a serious negative
impact on the human food supply and living environment. The steel indus-
try is characterized by high pollution, and about 18% of China’s carbon
emissions come from the steel industry. The ‘double carbon’ strategy has
brought important tasks and severe challenges to China’s steel industry. With
a view to evaluating the achievements of carbon emission control, carbon
emission monitoring systems at home and abroad have been continuously
established and improved. For the steel industry, accurate and efficient carbon
monitoring technology has a guiding role in guiding energy conservation
and carbon reduction. Traditional carbon emission accounting methods have
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some problems, such as long cycles and poor data quality, which restrict
the improvement of the lean level of carbon emission monitoring manage-
ment. Firstly, this paper investigates and analyzes the productive process
and carbon emission process of the steel industry and constructs an entropy
weight-grey correlation -TOPSIS analysis method for the correlation between
carbon emissions and influencing factors. Based on the above content, a
carbon emission monitoring method based on multiple influencing factors
is put forward, and the high monitoring accuracy of the model is proved
by taking the Tianjin steel industry as an example. The results show that
information mining of relevant data can strikingly increase the accuracy of
carbon emission monitoring in the steel industry.

Keywords: Big data, carbon emissions, carbon emission monitoring, energy
consumption, steel industry.

1 Introduction

In 2018, a report detailing the eight major catastrophic risks brought about by
changing climate and indicating the urgency of climate control has published
by the United Nations Intergovernmental Panel on Climate Change (IPCC).
In response to the challenges posed by environmental pollution, more and
more countries have turned “carbon neutrality” into a national strategy. As of
now extra than one hundred and twenty nations around the world have
pledged to achieve carbon neutrality by the middle of the 21st century,
and more than 110 countries have proposed to update their independent
contribution goals by 2030. In September 2020, Chinese President Xi Jinping
introduced that China will endeavor to meet the “carbon peak” before 2030
and “carbon neutrality” before 2060, indicating China’s ambition to partic-
ipate in global climate governance. China is the greatest steel producer and
the biggest steel consumer in the whole world. In 2021, China had a steel
output of 1.03 billion tons, accounting for 53% of the world’s total. High
output also brings about high air pollution and high energy consumption.
About 33.8% of the total industrial CO2 emissions come from the steel
industry. It is a key source of CO2 emissions in China. So as to cope with
global climate change and environmental pollution, the “double carbon”
strategy poses a tough challenge to the further development of China’s steel
industry [1]. As the most significant carbon emission industry in China’s
manufacturing department, the steel industry must complete the green and
low-carbon transformation as soon as possible and complete the increasingly



Correlation Analysis and Monitoring Method of Carbon Emissions 29

urgent carbon emission reduction task. To accomplish the goal of carbon
neutrality and emission reduction, the three links in the whole process of
steel production, i.e., the start-process-terminal [2], should participate in
the advance of low-carbon technologies, among which accurate and timely
carbon emission measurement is an indispensable foundation for promoting
the green transformation of China’s steel industry.

Carbon emission monitoring and accurate accounting are the basis for the
government to carry out carbon emission responsibility sharing and carbon
trading market, and they are also the key to stimulating the green-oriented
transition of enterprises and supporting the scientific decision-making
of coordinated development among energy, economy, and environment.
At present, mature carbon emission accounting methods include the Emission
Factor Approach, Carbon Material Flow Analysis, and Continuous Emission
Monitoring. The Emission-Factor Approach is broadly used, and this method
uses the default emission factors of IPCC and fuel consumption to calculate
carbon emissions [3]. However, there are many types of carbon emission
sources in the steel industry, and the characteristics of different enterprises are
different, which leads to a big difference between the default parameter and
the actual value of the carbon emission factor, so it is difficult to guarantee the
accuracy of carbon emission monitoring. The Carbon Material Flow Analysis
calculates carbon emissions by measuring the input and output of carbon,
which requires high precision for data such as product scheme, process flow,
production scale, and raw material consumption, and it is difficult to realize.
Continuous Emission Monitoring, generally, a carbon emission monitoring
module is installed in the Continuous Emission Monitoring System (CEMS),
and the emission of carbon dioxide is directly measured by continuously
monitoring the concentration and flow rate of carbon dioxide, which has
good data timeliness but high cost [4]. In addition, there are many kinds and
quantities of operation data related to carbon emission in the steel industry,
and the existing emission monitoring system lacks data analysis means, so it
is difficult to mine and utilize the correlation information contained in each
operation data.

To enhance the real-time accuracy of carbon emission measurement and
provide a data basis for further carbon emission reduction, plenty of scholars
and experts have carried out research in the field of carbon emission in the
steel industry. Reference [5] analyzes the relationship between the economy
and CO2 emissions in the steel industry by the three-stage least square model,
which shows that there is a two-way causal relevance between economy and
CO2 emissions in most steel enterprises. Reference [6] analyzes the influence
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of different factors on CO2 emission in the steel industry by using historical
data on the steel industry and gives some policy suggestions. Reference [7]
relates carbon emission and energy consumption and puts forward the opti-
mization method of the production process in the steel industry. Li Xinchuang
etc. studied and analyzed the carbon emission system standards both at home
and abroad based on the carbon emission status of the steel industry [8]. Wang
Xuying etc. comprehensively considered the economy, energy, low-carbon
technology application, and other aspects and carried out research on the
CO2 emission peak path in the steel industry based on scenario analysis [9].
However, the above research failed to combine carbon emission monitoring
with the specific features of the steel industry. On the basis of now available
relevant data and supporting facilities, how to consider the carbon emission
characteristics of the steel industry production process and complete the
accurate and practical carbon emission of the steel industry still need further
research.

To solve the above problems, this paper investigates the production
process of the steel industry and analyzes the range of carbon emission
influencing factors in the steel industry. This paper analyzes the correla-
tion between different influencing factors and carbon emissions in the steel
industry based on the entropy weight-grey correlation -TOPSIS model so
as to screen the input of the model and avoid data redundancy to reduce
the accuracy of carbon emissions measurement. Long short-term memory
(LSTM) and Grey model (1, N) (GM(1, N)) are used to further extract
effective information from the long-time series data of carbon emissions
and selected influencing factors and complete the carbon monitoring of the
steel industry based on correlation. The carbon emission monitoring method
described in this paper considers the characteristics of the steel industry and
takes full advantage of the existing database. Figure 1 shows the overall
framework of the method.

2 Calculation Model Based on Analysis of Carbon
Emission Characteristics in the Steel Industry

2.1 Analysis of the Steel Industry Production Process

The current carbon emission monitoring method can’t comprehensively
consider the inner and outer factors of carbon emission in the steel indus-
try. Therefore, this work first studies the production processes and carbon
emission links in the steel industry.



Correlation Analysis and Monitoring Method of Carbon Emissions 31

C
orrelation A

nalysis
M

onitoring M
ethod

Inducement of 
influencing 

factors

Industry process 
analysis

Existing 
monitoring 

methods

Correlation 
analysis

Abnormal value 
detection

Abnormal carbon 
emission

Abnormal 
influencing 

factors
Delete data 

points
Eliminate and 

complete

Highly relevant data

Artificial 
Intelligence 
Algorithms

Measurement 
model

Current 
influencing 
factors input

Measurement resultCurrent carbon 
emission input

Y
N

D
ata processing

entropy grey 
correlation 

TOPSIS

Sufficient 
data

Insufficient 
data

LSTM

GM(1,N)

Improved 
LOF

KNN
Meet the data 
requirements?

Figure 1 Overall framework of the method.

The productive process of the steel industry includes five links: coking,
sintering, ironmaking, steelmaking, and steel processing:

The coking process flow is shown in Figure 2. After coal blending
according to the proportion, it is heated to 950∼1050◦C in a coking furnace
under the condition of isolated air and dried at high temperature to make coke
and crude gas. The CO2 emission from the coking process is mainly caused
by the combustion of fuel in the coking process, and some CO2 emissions are
caused by the escape of coke oven gas and gaseous chemical products in the
production process.

The sintering process flow is shown in Figure 3. The prepared raw
materials, such as iron, fuel, flux, substitutes, etc. are proportioned, mixed,
and granulated according to a certain proportion, laid on the trolley of the
sintering machine, and ignited under negative pressure [10]. After ignition,
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Figure 2 Coking process flow.

the sintered materials are partially softened and melted by the high temper-
ature generated by the combustion and oxidation of iron-oxygen minerals,
resulting in physical and chemical reactions, forming a blocky burden with
sufficient strength and granularity, and finally, the sintered ore is obtained
after crushing and screening. The emission of CO2 in this process basically
comes from the combustion of fuel in the sintering material and the CO2

produced in the process of flux sintering.
The ironmaking process flow is shown in Figure 4. The blast furnace pro-

cess has the highest energy consumption in China’s steel production process,
accounting for more than 50% of the whole process’s energy consump-
tion [11]. Carbon dioxide emissions from the ironmaking process mainly
come from the emissions from the combustion of coke or other fuels, the
emissions from the consumption of different carbon-containing raw materials
same as purchased ferroalloy, and the emissions from the decomposition of
flux.

The steelmaking process flow is shown in Figure 5. The steelmaking
process is mainly composed of raw material storage and transportation,
converter smelting, converter flue gas purification, vaporization cooling, slag
treatment, continuous casting, etc. According to the proportion, scrap steel
and molten iron are poured into the converter, slag-making materials such
as quicklime are added, and oxygen is blown into the furnace top to oxidize
impurity elements such as silicon, sulfur, carbon, manganese, and phosphorus
in molten iron into various oxides, forming steel slag or gas, which is then
removed. Carbon dioxide emission from the steelmaking process mainly
comes from fuel combustion and carbon oxidation in molten iron.
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Figure 3 Sintering process flow.

The steel processing procedure flow is shown in Figure 6. There are many
forms of steel processing, and steel rolling is the main form of iron and steel
joint enterprises. The energy consumption of steel processing is large, and the
CO2 emission mainly comes from the purchase of electricity.

2.2 Traceability of Carbon Emissions in the Steel Industry

It can be concluded by the production process mentioned above that the total
amount of CO2 emissions from steel production enterprises is considered
as the summation of fossil fuel combustion emissions, industrial production
process emissions, emissions implicit by the net purchase of electric power
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Figure 5 Steelmaking process flow.
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by enterprises, and the implied emissions from carbon sequestration products
are deducted, which is calculated according to (1).

Eindustry = Efossil + Eproduction + Eelectricity − Esequestration (1)

where Efossil equals the summation of emissions from the combustion of
diverse fuels consumed by the industry in the accounting period:

Efossil =
n∑

i=1

AD i × EF i (2)

where EF i is the CO2 emission factor of the ith fossil fuel, and AD i is the
consumption of the ith fossil fuel in the accounting period, and the calculation
formula is as follows:

AD i = NCV i × FC i (3)

where NCV i represents the average heat value of the ith fossil fuel and FC i

represents the net consumption of the ith fossil fuel in the accounting period.
The carbon dioxide emission factor of fossil fuels is calculated as (4):

EF i = CC i ×OF i ×
44

12
(4)

where CC i represents the C element content per unit heat value of the ith
fossil fuel and OF i represents the carbon oxygenation efficiency of it.

CO2 emissions in industrial processes come from solvents, electrodes,
and raw materials.

Eproduction = Esolwent + Eelectrode + Ematerial (5)

The CO2 implied by the purchase of net electricity comes from the carbon
produced by the power providers.
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For carbon-fixing products such as crude steel, gas, methanol, etc., the
solidified CO2 is not emitted within the boundary of the enterprise but
is implicitly emitted in the subsequent process of the product, and the
corresponding carbon emissions should be deducted.

3 Correlation Model of Carbon Emission Data in the Steel
Industry

3.1 Calculation Method of Carbon Emissions Based on
Influencing Factors

According to investigation and research, the carbon emission structure of the
Tianjin steel industry is shown in Figure 7, and the proportion of purchased
electric power is small. The carbon emission monitoring method based on
electricity alone is not suitable for the steel industry. For this reason, the
historical data of the economy, output, etc. are incorporated into the carbon
emission monitoring model, i.e.

Ycarbon = f(Xelectricity, Xeconomy . . . Xproduction) (6)

where Ycarbon represents carbon dioxide emission forecast, Xelectricity,
Xeconomy and Xproduction represent the historical data of electricity, econ-
omy, and production, respectively. Other relevant historical data should also
be included in the model.

Aiming at the steel industry, this work analyzed and summarized the
influencing factors of carbon emissions in the steel industry and constructs

CO2 from fossil

CO2 from electricity

CO2 from production

Figure 7 Carbon emission composition of Tianjin steel industry.
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Table 1 Index of influencing factors of the steel industry
Variable Symbol Meaning

Value Added VA The added value of the steel enterprise

Output Carbon Intensity OCI Carbon emissions per unit of added value

Energy Intensity EI Energy consumption per unit output value

Electricity Consumption EC Electricity consumption data of the steel industry

Green Electricity Proportion GEP The proportion of clean energy generation

Enterprise Scale SCL The proportion of production value in the region

Product Structure PS The proportion of crude steel output

Technical Competence TEC Number of related patented technologies of steel

an energy big data demand catalog for carbon monitoring services. The influ-
encing factors are mainly considered from three aspects: (1) Macro factors,
e.g., energy consumption and economic yield; (2) External driving factors,
including investment scale and diverse factors that indirectly influence carbon
emissions; (3) Important factors in each link of the steel industrial produc-
tion process. The following table lists the indicators and meanings of some
influencing factors of carbon emissions in the steel industry.

Some influencing factors are specifically described as follows:

Energy Intensity: Energy intensity reflects the comprehensive utilization effi-
ciency of energy in different countries, regions, and enterprises. When the
total output value is constant, the stronger the energy consumption intensity,
the larger the carbon emissions of enterprises [12]. However, the energy
intensity is also related to the environmental technical efficiency, so the
correlation between the energy intensity and the emissions intensity is still
unclear.

Enterprise Scale: The enterprise scale represents the concentration of human,
material, and financial resources, which is a key factor affecting carbon
emissions. However, enterprise scale has a double-sided influence on carbon
emissions. On the one hand, the bigger the scale of enterprises, the greater
the efficiency of resource integration and utilization; on the other hand, when
the scale of enterprises exceeds a certain threshold, the carbon emission
efficiency hardly increases.

Product Structure: Steel products mainly include pig iron, crude steel, and
steel products, and the amount of carbon dioxide emitted by different prod-
ucts is different. Among them, the production of crude steel needs to consume
a lot of fossil energy, while the production of steel products mainly consumes
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electric energy and emits less carbon dioxide. Therefore, the carbon dioxide
emission rate is closely related to the product structure.

Technical Competence: From the dynamic trend of carbon emission effi-
ciency in the steel industry in recent years, it can be found that the output
of carbon emissions is largely affected by the level of technology. Through
the improvement and perfection of technology, technological progress can
bring economic development on the one hand, and reduce energy input and
pollution emissions on the other hand [13].

3.2 Correlation Analysis of Influencing Factors

An influencing factors quantitative analysis model based on entropy grey
correlation TOPSIS is constructed. This work uses the entropy weight method
to calculate the weight of influencing factors of carbon emission., which
effectively reduces the subjective impact and makes the evaluation results
more authentic [14]; The original TOPSIS method is usually expressed by
linear piecewise function, but its disadvantage is that it cannot reflect the
possible nonlinear relationship among the elements in the research object.
The introduction of the grey correlation degree can effectively correct this
defect of the TOPSIS method [15].

In the process of constructing the evaluation index system, different
influencing factors are different in direction and order of magnitude. The
data of positive and negative indexes are standardized through (7) and (8)
respectively.

yij =
xij −mini{xij}

maxi{xij} −mini{xij}
(7)

yij =
maxi{xij} − xij

maxi{xij} −mini{xij}
(8)

In the matrix with n types of influencing factors, xij is the index data of
influencing factors in row i and column j before standardization and yij is
the result data after standardization.

The weights of the influencing factors are computationally acquired by
solving the information entropy of the index. The information entropy of the
influencing factor j is denoted as Hj , and its calculation formula is as follows:

Hj = −k

n∑
i=1

(pij ln pij) (9)
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k = 1/ lnn (10)

pij =
xij∑n
i=1 xij

(11)

where pij is the contribution of index data i to influencing factor j.
Calculate the weight ωj of the influencing factor by (10).

ωj =
1−Hj∑n

j=1(1−Hj)
(12)

A new matrix Z can be obtained by multiplying the entropy weight of
each influencing factor by the matrix Y obtained by standardization. The
ideal positive solution set Z+ and negative solution set Z− are respectively
the set consisting of the maximum and minimum values of all influencing
factors in the matrix that is weighted and normalized.

The grey correlation coefficient matrix between the influencing factors
and positive and negative ideal solutions is recorded as R+ = (r+ij)m×n and
R− = (r−ij)m×n. The calculation formulas of elements r+ij and r−ij in the
matrix are shown in (13) and (14) respectively.

r+ij =
minj |Z+

j − Zij | − ρmaxj |Z+
j − Zij |

|Z+
j − Zij |+ ρmax |Z+

j − Zij |
=

ρωj

ωj − Zij + ρωj

(13)

r−ij =
minj |Z−

j − Zij | − ρmaxj |Z−
j − Zij |

|Z−
j − Zij |+ ρmax |Z−

j − Zij |
=

ρωj

ωj − Zij + ρωj

(14)

where ρ represents the resolution coefficient and satisfies 0 < ρ < 1,
the smaller the value, the more significant the resolution effect. For the
convenience of calculation, this paper takes ρ as 0.5.

Calculate the grey correlation degree r+i and r−i between each influencing
factor and ideal positive and negative solutions as follows:

r+i =
1

n

n∑
j=1

r+ij (15)

r−i =
1

n

n∑
j=1

r−ij (16)
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The grey correlation degree r+i and r−i , Euclidean distance d+i and d−i are
processed dimensionless in turn and merged:

R+
i =

r+i
max r+i

, R−
i =

r−i
max r−i

(17)

D+
i =

d+i
max d+i

, D−
i =

d+i
max d+i

(18)



S+
i = αR+

i + βD−
i

S−
i = αR−

i + βD+
i

α+ β = 1

α, β ∈ [0, 1]

i ∈ M

(19)

Finally, the relative closeness of each influencing factor is determined,
and its calculation formula is as follows:

Ci =
S+
i

S+
i + S−

i

(20)

where Ci is the relative closeness of the influencing factor, the larger the
value, the stronger the correlation between the influencing factor and carbon
emissions; On the contrary, the influence factors with small value have a
weak correlation with carbon emissions, which may affect the accuracy of
the model.

4 Dynamic Monitoring of Carbon Emissions Based on
Correlation Model

4.1 Outlier Detection Based on Correlation

In the process of data acquisition, transmission, and storage, it is inevitable
that data will be abnormally missing due to uncontrollable factors such
as abnormal communication. The abnormality of the sample leads to the
destruction of the data correlation and the deviation of the model results,
which brings great difficulties to the follow-up carbon emission monitor-
ing and analysis. Therefore, the effective elimination of abnormal data
is an important prerequisite to achieving high-precision carbon emission
monitoring in key industries.
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LOF (Local Outlier Factor) is a commonly used algorithm for detecting
outliers. The algorithm computes the outlier index of all data points to
determine the outlier point set and usually selects some points with the largest
outlier index as outliers. LOF algorithm based on distance calculation is
defined as follows:

Definition 1 (k-distance): the k-distance of the data object q is defined as the
distance from the nearest kth point in the data set to the data object q, denoted
by distk(q).

Definition 2 (k-distance neighborhood): The points set within the circle
with the point q as the center and distk(q) as the radius is the k-distance
neighborhood, denoted by Nk(q).

Definition 3 (reachable distance): distr(p, q), the reachable distance
between the data point p and data point q is the maximum value of distk(q)
and d(p, q), i.e.

distr(p,q) = max{distk(q), d(p, q)} (21)

where d(p, q) means the distance between the data point p and the data
point q, as shown in Figure 8.

Definition 4 (local reachable density): The reciprocal of the mean value
of the reachable distance of all points in the k-distance neighborhood of the
point q is called the local reachable density of q, i.e.

lrdk(q) =
|Nk(q)|∑

p∈Nk(q)
distr(p, q)

(22)

q

p1

p2

distr=d(p2,q)

distr=distk(q) distk(q)

Figure 8 Various distances of LOF.
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Definition 5 (local outlier factor): The value of the average local reachable
density of the neighbors of q divided by the local reachable density of q, i.e.

lof k(q) =

∑
p∈Nk(q)

lrdk(p)

|Nk(p)|

/
lrdk(q) (23)

Because the volatility of multidimensional data with different eigenvalues
is quite different, in practical application, the traditional LOF tends to treat the
normal data with a large characteristic fluctuation as an abnormal value, or it
can’t identify the abnormal data because of a small characteristic fluctuation.
Therefore, this paper proposes an improved LOF algorithm.

The traditional LOF distance calculation adopts Euclidean distance, and
the calculation method of n-dimensional data is:

dE =

√√√√ n∑
i=1

(xi − yi) (24)

This calculation method doesn’t take into account the different dimen-
sions of multidimensional data [16], so this paper uses Mahalanobis distance
to calculate:

dM =
√

(X − Y )TΣ−1(X − Y ) (25)

where Σ is the covariance matrix of multidimensional variables.
According to the volatility of different data, the relative closeness of

influencing factors is taken as the calculation weight of each influencing
factor in LOF. Based on a detailed data analysis, it was found that normal
signals collected from the research subjects often display similar data feature
distributions. Incorporating weights further reduces the distances between the
data points, resulting in feature differences between normal signals that tend
towards, or equal to, zero. This can lead to a situation whereby the calculation
of local outlier factor (LOF) produces an issue in which the locally reachable
density approaches infinity [17]. For this reason, an exponential function is
introduced to map the distance. The weighted distance calculation formula is
as follows:

dW = e
√

(X−Y )TCTΣ−1C(X−Y ) (26)

The monitored outliers are divided into two situations, which are treated
differently: (1) When the outliers are the influencing factors, the outliers
are eliminated, and the K-Nearest Neighbor (KNN) algorithm is used to
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complete the data. KNN considers the continuity of time series data and
uses the weighted average of recent observation points as the filling value.
(2) When the outlier is carbon emission data, completing the data is equiva-
lent to making an inaccurate prediction, but it will reduce the accuracy of the
model, so we choose to delete the data point [18].

4.2 Carbon Emission Monitoring Based on Dynamic LSTM

With the advancement of time, when new data enter the training set, in
order to avoid model redundancy or over-fitting caused by too much data,
it is essential to control the scale of the training set reasonably. To ensure
the uniformity of data in time series, the maximum interval driving strategy
eliminates the oldest data when adding new data. That is, it realizes the
translation of training data in time. This method is simple to realize, but it
will not be of great help to the improvement of model accuracy.

The strategy of minimum error rate driving means that the retained sample
is the sample with the minimum error rate when certain data is eliminated.
This method of elimination needs to traverse all the data to try to eliminate
and then compare the training results so as to obtain the final data to be
eliminated. When the data scale is very large, it will take too long and have
low practicability.

In this paper, the hybrid driving strategy is adopted to update the data.
Considering the advantages of the two strategies, the data with small or even
negative contributions to the model is eliminated while keeping the time
uniformity of the data as much as possible.

LSTM has obvious advantages in processing time series data [19]. In
this paper, LSTM is used to realize carbon emission monitoring based on
influencing factors. The structure is shown in Figure 9:

In LSTM, W is the weight matrix of each unit and b is the corresponding
bias, which together determines the information conversion in the control gate
and Cell [20].

This part of the operation is determined by the forgetting gate and
Sigmoid function σ in it. The forgetting gate analyzes the information in
historical carbon emission data yt−1 and influencing factors xt and finally
determines which information is forgotten by σ, and the output value of σ
is between 0 and 1, where 0 means that all the information in Ct−1 is not
retained, and 1 means that all of it is kept. Its calculation equation is as
follows:

ft = σ(Wf · [yt−1, xt] + bf ) (27)
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Figure 9 Structure of LSTM.

After that, LSTM will prepare to update the information in the Cell.
First, the input gate reads the information in yt−1 and xt, then decides which
information needs to be updated by σ again. Then, the tanh function is used
to select the candidate information C ′

t in yt−1 and xt that may need to be
written in Ct.

it = σ(Wi · [yt−1, xt] + bi) (28)

C ′
t = tanh(WC · [yt−1, xt] + bC) (29)

The current cell information Ct is obtained by adding the old information
selected and retained by the forgetting gate and the new information selected
from the candidate information by the input gate, as follows:

Ct = ft ∗ Ct−1 + it ∗ C ′
t (30)

Finally, the updated cell information Ct and the input feature [yt−1, xt]
together determine the output of LSTM and get the real-time carbon emission
monitoring data yt of the steel industry.

Ot = σ(WO · [yt−1, xt] + bO) (31)

yt = Ot ∗ tanh(Ct) (32)

When there are many outliers in data, the available data may be reduced,
and the accuracy of the LSTM algorithm will be reduced [21]. In this case,
the GM (1, N) prediction model can be used to accumulate the series to
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complete the effective monitoring of carbon emissions. GM(1, N) has obvious
advantages in small sample models [22], and its definition is as follows.
Let the original data sequence be X

(0)
i , and the sequence generated by one-

time accumulation be X
(1)
i . Equation (33) is the mathematical model of

GM(1, N). Where a is the system developing coefficient, bix
(1)
i is called

the driving term, bi is called the driving coefficient, and â = [a, b2, . . . , bN ]
is called the parameter sequence of the model. Equations (33) and (34) are
called the whitening equation of the model.

x
(0)
1 (k) + az

(1)
1 (k) =

N∑
i=2

bix
(1)
i (k) (33)

Y =


x
(0)
1 (2)

x
(0)
1 (3)

...

x
(0)
1 (n)

 (34)

Then the least square estimation of the parameter sequence satisfies:
â = (BTB)−1BTY . GM(1, N) model is able to synchronously reflect the
effect of influencing factors on the system behavior feature sequence depend-
ing on the model structure and its own dynamic characteristics and can predict
the system behavior feature sequence on the premise of knowing the future
change trend information of driving factors [23].

5 Case Study

In this paper, taking Tianjin as an example, firstly, based on entropy weight-
grey correlation -TOPSIS, the correlation analysis of influencing factors is
carried out, and the results are shown in Figure 10. The data in the example
are mainly provided by State Grid Tianjin Electric Power Co., LTD, and some
data are taken from Tianjin Statistical Yearbook. Note that the output result
of correlation analysis is in the range of −1 to +1, in which the nearer to −1,
the closer the negative correlation; the nearer to +1, the closer the positive
correlation; and 0 means no correlation.

For the steel industry in Tianjin, the scale of enterprises has little correla-
tion with carbon emissions, and the scale of enterprises has little correlation
with other influencing factors too. Except for the scale of enterprises, carbon
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1.00 0.85 -0.61 -0.61 -0.08 0.66 0.68 0.70 0.93

0.85 1.00 -0.81 -0.82 -0.11 0.71 0.74 0.82 0.81

-0.61 -0.81 1.00 0.87 0.02 -0.46 -0.48 -0.74 0.61

-0.61 -0.82 0.87 1.00 0.03 -0.42 -0.46 -0.71 -0.60

-0.08 -0.11 0.02 0.03 1.00 -0.09 -0.06 0.15 -0.01

0.66 0.71 -0.46 -0.42 -0.09 1.00 0.95 0.64 0.68

0.68 0.74 -0.48 -0.46 -0.06 0.95 1.00 0.70 0.73

0.70 0.82 -0.74 -0.71 0.15 0.64 0.70 1.00 0.80

0.93 0.81 -0.61 -0.60 -0.01 0.68 0.73 0.80 1.00
 

Figure 10 Correlation analysis of influencing factors of carbon emissions in the steel
industry.

emissions are closely related to other influencing factors, among which, it is
negatively related to product structure and economic output, while it is posi-
tively related to other factors. Therefore, it is considered that Enterprise Scale
is a redundant variable in carbon emission measurement of steel industry and
should be deleted. Finally, Value Added, Output Carbon Intensity, Energy
Intensity, Electricity Consumption, Green Electricity Proportion, Enterprise
Scale, Product Structure and Technical Competitiveness are selected as
important influencing factors to join the model training.

The historical data of carbon emissions of the Tianjin steel industry
from 2006 to 2019 and other influencing factors except enterprise scale
were added to LSTM model training, and as a comparison, auto-regressive
moving average model (ARMA), Support Vector Machine (SVM) and ridge
regression were used to calculate carbon emissions, with the results shown in
Figure 11:

The Mean Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE) and Mean Square Error (MSE) of each algorithm in the example are
shown in Table 2.

The conclusions can be summarized as follows:

(1) The carbon emission of the steel industry is large, but the fluctuation
of carbon emission is relatively stable, and the LSTM measurement
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Figure 11 Comparison of measurement results of carbon emissions in the Tianjin steel
industry.

Table 2 Calculation error of different algorithms
Algorithms MAPE/% MAE/(tons·CO−1

2 ) MSE/(tons2·CO−2
2 )

LSTM 4.71 15.23 260.50
ARMA 6.42 17.30 444.42
SVM 5.19 16.47 280.25
Ridge regression 10.0 28.01 1324.59l

model proposed in this word is able to get a superior accuracy of carbon
emission measurement. Among them, the root mean square error of
carbon emission measurement is 18.89 tons/CO2, the average absolute
error is 15.23 tons/CO2, and the measurement accuracy is 97.76%.
And the measured carbon emission curve is basically consistent with
the fluctuation trend of the real carbon emission curve;

(2) The overall accuracy of the carbon emission measurement model of
the steel industry based on big data is high, which indicates that the
model can be more competent and complete the task of carbon emission
measurement of the steel industry. In this example, the LSTM algorithm
has lower errors than other algorithms in all aspects. This indicates that
the LSTM algorithm is more suitable for carbon emission measurement
based on big data.
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6 Conclusion

Carbon emissions produced by the steel industry account for a large part of
carbon emissions in China. This paper investigates and analyzes the produc-
tion process of the steel industry and studies the influencing factors of carbon
emissions. In this paper, the evaluation model based on entropy weight-grey
correlation -TOPSIS is used to analyze the correlation of different carbon
emission influencing factors, and it is concluded that in the steel industry CO2

emissions data is highly correlated with data such as electricity and economy,
while the correlation with the scale of the enterprise is weak.

Aiming at the carbon emission of the Tianjin steel industry, this work
adds the influential factors with strong correlation into the calculation model,
and the calculation accuracy of the obtained model is over 95%, which can
fulfill the requirements of carbon emission calculation of the steel industry.
Because of data security and privacy, this paper only establishes the cor-
relation model between influencing factors and carbon emissions based on
available data, so how to establish a comprehensive correlation monitoring
model of carbon emissions needs further study. In general, apart from the
power data, the carbon emissions of the steel industry are highly corre-
lated with many factors. Mining and making full use of relevant data can
significantly improve the accuracy of carbon emission monitoring.
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