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Abstract

Climate change is one of the major challenges currently facing the world.
The factors influencing the carbon emission of energy consumption and the
future trend are important guidance for proposing scientific carbon reduc-
tion strategies to mitigate climate change. In this paper, the Logarithmic
Mean Divisia Index (LMDI) model and stochastic impacts by regression
population, affluence and technology (STIRPAT) model are established to
analyze and predict the carbon emission of energy consumption. The LMDI
model is used to factorize the CO2 changes generated by residential domestic
energy consumption, and to decompose and analyze the carbon emission
factors of residential domestic energy consumption in terms of energy car-
bon emission intensity, energy consumption structure, energy consumption
intensity, economic development, and population to determine the driving
factors leading to carbon emission changes; based on the above study, we set
up nine different development scenarios and applied the scalable stochastic
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environmental impact assessment model to project energy carbon emissions
in 2035; based on carbon emission prediction and analysis, the CO2 emis-
sions of total energy consumption, total electricity consumption, industrial
energy consumption and terminal energy consumption were selected, and the
correlation coefficients with relevant climate indicators such as temperature
change and humidity change were analyzed, and the stress model of energy
consumption on climate change was constructed. The results show that: the
correlation coefficients of energy consumption indicators and temperature
change indicators all pass the significance test at P = 0.01 level, among
which the correlation coefficients with temperature difference are the highest,
all of them are greater than 0.9 and pass the significance test at P = 0.001
level; among the indicators of energy consumption, the correlation coefficient
between total industrial energy consumption and temperature difference was
slightly higher than that of total energy consumption and electricity con-
sumption; the stress relationship between the increase of energy consumption
and the temperature difference is consistent with the growth of the third
polynomial curve.

Keywords: climate change, energy consumption, carbon emissions, STIR-
PAT model, stress model.

1 Introduction

According to the definition of the United Nations Framework Convention
on Climate Change (UNFCCC), “climate alternate is brought on via direct
or oblique human things to do that trade the composition of the ecosystem
after a vast duration of observation, aside from herbal local weather change.”
While herbal inside approaches or exterior forcing can be the motive of
local weather change, persevered anthropogenic modifications in atmospheric
composition and land use are vital contributors to local weather alterna-
tives [1]. The assessment report of the Panel on Climate Change notes that
the impact of human activities on the climate system is clear. Many human
activities produce greenhouse gas emissions, of which energy use is by far the
largest source of emissions [2]. The growing issue of energy-related carbon
dioxide emissions in the atmosphere is gradually attracting the attention of
scientists in the field of climate change.

Currently, Zhu Changzheng et al. measured the carbon emission level of
China’s transportation industry from 2000 to 2019, analyzed the main influ-
encing factors of carbon emission, and constructed an extended STIRPAT
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model [3]; With the development of human beings, energy demand and cli-
mate change are facing a serious situation, and in order to find new techniques
to solve these problems, Kang H et al. [4] conducted long core displacement
experiments concerning CO2 infusion on 11 different core samples from the
N formation of the M oil field; Jinfeng Qu et al. [5] used Tianjin as a research
case to calculate its CO2 emissions generated by residential domestic energy
consumption, and applied the LMDI model to factorize the amount of CO2

changes generated by residential domestic energy consumption in Tianjin
to determine the driving factors that lead to changes in carbon emissions;
Guo Y et al. proposed the implementation of “dual carbon” efforts guided
by sustainable design concepts to actively address global climate change
while improving the global green environment, furthering the global eco-
logical and economic win-win situation, and restoring the ecosystem to its
optimal state as much as possible [6]; Xie Di et al. [7] mixed the multi-
model internet ecosystem productiveness records from the sixth section of
the International Coupled Model Comparison Program (CMIP6) to examine
the internet carbon emission traits in Qinghai Province underneath exclusive
future improvement situations and recognized carbon impartial improvement
pathways underneath every scenario; Sebos I et al. endorse a methodological
framework that can be used to quantify the outcomes of abatement moves
(i.e., emission reductions) primarily based on complete and obvious fashions
and formulation that can be effortlessly tracked and replicated, as properly as
to estimate the projected results of insurance policies implemented, adopted,
and deliberate for future years (e.g., 2030) (exalted analysis) [8].

At present, climate exchange is one of the most pressing challenges
facing the world. The elements influencing the carbon emission of power con-
sumption and the future fashion are vital preparation for proposing scientific
carbon discount techniques to mitigate local weather change. In this paper,
the LMDI mannequin and STIRPAT mannequin are mounted to analyze and
predict the carbon emission of power consumption. The LMDI mannequin is
used to factorize the quantity of CO2 adjustments generated with the aid of
residential home power consumption, and to decompose and analyze the car-
bon emission elements of residential home electricity consumption in phrases
of electricity carbon emission intensity, electricity consumption structure,
strength consumption intensity, financial development, and population, and to
decide the riding elements main to carbon emission changes; primarily based
on the above study, we set up 9 one-of-a-kind improvement situations and
utilized the scalable environmental affect evaluation mannequin (STIRPAT)
to mission power carbon emissions in 2035; based totally on the carbon
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emission projection analysis, we chosen complete electricity consumption,
complete electrical energy consumption, industrial electricity consumption
and CO2 emissions from end-use electricity consumption, and analyzed the
correlation coefficients with applicable local weather symptoms such as
temperature trade and humidity trade to assemble a mannequin of power
consumption’s coercion on local weather change. The consequences exhibit
that: the correlation coefficients of strength consumption indications and
temperature trade symptoms all pass by the value check at P = 0.01 level,
amongst which the correlation coefficients with temperature distinction are
the highest, all of them are higher than 0.9 and skip the importance check at
P = 0.001 level; the correlation coefficients of whole industrial power con-
sumption and temperature distinction amongst strength consumption warning
signs are barely greater than these of whole power consumption and electrical
energy consumption; the extend of electricity consumption on temperature
distinction The coercive relationship is constant with a cubic polynomial
curve growth.

2 LMDI’s Carbon Emission Decomposition Model

2.1 Kaya Constant Equation and Its Extensions

Kaya proposed Kaya’s constant equation at the IPCC workshop in 1989,
and its basic equation is shown in Equation (1), where CO2 denotes carbon
emissions, PE denotes primary energy consumption, In the context of the
economy, GDP signifies gross regional product, while POP signifies the
population size as a whole. Using Kaya’s constant equation, we can calcu-
late the change in carbon emissions due to energy consumption, economic
development, and population growth, which is widely used in the field of
environmental issues such as greenhouse gas emissions research [9].

CO2 =
CO2

PE
× PE

GDP
× GDP

POP
× POP (1)

Its openness and expandability make it a good choice for a constant
equation, this paper decomposes the Kaya constant equation by extending
it, refining different sectors and types of energy consumption based on the
actual situation, and the extended Kaya constant equation is shown in the
Equation (2).

C =
∑
ij

Cij =
∑
ij

Cij

Eij
× Eij

Ei
× Ei

Qi
× Qi

Q
× Q

P
× P (2)
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Where: a total carbon emission is C; an overall energy consumption is
E; a total regional GDP is Q; a total regional population is P; i denotes
different industry types, i = 1, 2, . . . , 6; j denotes different energy types,
j = 1, 2, . . . , 15.

By further simplifying Equation (2), we obtain:

C =
∑
ij

Cecij × ES ij × EI i × IS i × ED × PS (3)

Cecij = Cij /Eij is the ratio of CO2 emissions to energy consumption in
the industry i when consuming energy type j, indicating the carbon emission
factor; ES ij = Eij /Ei is the ratio of energy consumption in industry j to
total energy consumption in the industry i, indicating the energy consumption
structure; EI i = Ei/Qi is the ratio of total energy consumption in the indus-
try i to industry gross product, indicating the energy consumption intensity;
IS i = Qi/Q is the ratio of gross product in the industry i to regional gross
product, indicating the regional industrial structure; ED = Q/P is the ratio
of regional GDP to the regional total population, indicating the per capita
affluence; PS = P is the regional total population, indicating the population
size.

2.2 Construction of Carbon Emission Decomposition Formula
Based on LMDI

As a result of combining the extended Kaya constant equation presented
in the previous article, the complete impact of carbon emission has an
impact on elements of electricity consumption is decomposed into the car-
bon emission coefficient effect, electricity shape effect, power depth effect,
industrial shape effect, monetary improvement degree impact and populace
dimension impact based totally on the log-average Likelihood of Dee’s
index decomposition (LMDI) proposed with the aid of Ang B W [10], and
the carbon emission influence shown in Equation (4) is constructed Factor
decomposition formula. According to the assumption of IPCC, the energy
carbon emission factor does not change with time, i.e., the carbon emission
factor effect is negligible.

∆C = CT − C0 = ∆CES +∆CEI +∆CIS

+∆CED +∆CPS (4)

where: ∆C is the exchange in carbon emissions from power consumption
from 12 months zero to year T; CT is the carbon emissions in 12 months T at
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the cease of the period; Co is the carbon emissions in 12 months zero of the
base period; ∆CES is the trade in carbon emissions due to the exchange in
power consumption shape from the base length to the stop of the period;
∆CEI is the trade in carbon emissions due to the exchange in strength
consumption depth from the base duration to the stop of the period; ∆CIS

is the exchange in carbon emissions due to the alternate in industrial shape
from the base length to the quilt of the period; ∆CED is the trade in carbon
emissions due to the trade in monetary improvement degree from the base
length to the quilt of the period; ∆CPS is the exchange in carbon emissions
due to the trade in populace dimension from the base duration to the quilt of
the duration [11].

The basic equations for the contribution values of different decomposition
factors are shown in Equations (5)∼(9), respectively

∆CES =
∑
ij

(CT
ij − C0

ij )

(lnCT
ij − lnC0

ij )
ln

EST
ij

ES 0
ij

(5)

∆CEI =
∑
ij

(CT
ij − C0

ij )

(lnCT
ij − lnC0

ij )
ln

EI Ti
EI 0i

(6)

∆CIS =
∑
ij

(CT
ij − C0

ij )

(lnCT
ij − lnC0

ij )
ln

IST
i

IS 0
i

(7)

∆CED =
∑
ij

(CT
ij − C0

ij )

(lnCT
ij − lnC0

ij )
ln

EDT

ED0 (8)

∆CPS =
∑
ij

(CT
ij − C0

ij )

(lnCT
ij − lnC0

ij )
ln

PST

PS0
(9)

The contribution of different decomposition factors is shown in Equa-
tions (10) to (14), respectively [12].

rES =
∆CES

∆C
× 100% (10)

rEI =
∆CEI

∆C
× 100% (11)

rIS =
∆CIS

∆C
× 100% (12)
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rED =
∆CED

∆C
× 100% (13)

rPS =
∆CPS

∆C
× 100% (14)

Where: Energy consumption structure change from the base period to the
end of the period, rES , contributes to energy consumption carbon emissions;
rEI is the contribution rate of energy consumption intensity change to energy
consumption carbon emission from the base period to the end of the period;
rIS is the contribution rate of industrial structure change to energy consump-
tion carbon emission from the base period to the end of the period; From the
base period to the end of the period, rED represents the increase in energy
consumption carbon dioxide emissions due to economic development; From
the base period to the end of the period, rPS represents the rate by which
population size has contributed to energy consumption carbon emissions.

2.3 Metrics Analysis and Data Acquisition

(1) Energy structure. The trade of strength shape is one of the essential
motives for the trade of carbon emissions. The proportion of coal and oil
consumption in an eastern province has been about 60% for many years,
and the high proportion of non-clean energy consumption has a direct
impact on carbon emissions, due to its own nature, its carbon emission
coefficient is much greater than that of other energy sources, and a large
amount of CO2 will be emitted during the combustion process, which
has great resistance to regional carbon emission reduction [13]. In order
to study the actual impact of energy consumption structure on carbon
emissions in an eastern province, this paper chooses the percentage of
distinctive strength consumption to whole strength consumption to sym-
bolize the present-day electricity shape of an eastern province, denoted
by using ES.

(2) Energy intensity. Energy intensity is an economic indicator used to
measure the energy efficiency of a country or region, the smaller the
energy intensity, the more mature the region’s energy utilization technol-
ogy. At the same time, the innovative development of energy technology
can greatly improve the efficiency of energy utilization, reduce the total
energy consumption, and effectively control the CO2 emissions of the
energy system. Therefore, current research regularly uses power depth
to replicate the degree of regional technological innovation. In this
paper, we pick out the ratio of complete regional electricity consumption
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to actual GDP (in regular 2000 prices) to symbolize the cutting-edge
electricity depth of an eastern province, expressed as EI.

(3) Industrial structure. The mutual transformation of different industries
in the industrial structure and the internal adjustment of each industry
will have an important impact on carbon emission intensity. In the
economic and social development process of an eastern province, the
secondary industry occupies a relatively important position, but due to
its own characteristics of the process, it will consume a lot of fossil
energy in daily production operations [14]. Therefore, it is inevitable to
motivate a massive quantity of CO2 emissions. In this paper, we select
the percentage of output fees of different industries to regional GDP to
signify the cutting-edge industrial shape of an eastern province, which
is expressed by using IS.

(4) Level of monetary development. Per capita GDP is an important reflec-
tion of national prosperity, and with the improvement of people’s living
standards, the total energy consumption continues to increase, and
the impact on the environment is becoming increasingly significant.
However, the concept of carbon intensity shows that if GDP growth
exceeds the growth rate of CO2 emissions, carbon emission intensity
will decrease. Therefore, the impact of economic development level
on regional carbon emissions is uncertain, and needs to depend on the
relative size of CO2emissions and GDP growth [15]. In this paper, we
pick GDP per capita to mirror the present-day financial improvement
of an eastern province, and in order to remove the impact from fee
fluctuations in unique years, the charge stage in 2000 is used as the
benchmark for conversion, which is expressed by way of ED.

(5) Population size. Population measurement and CO2 emissions are pos-
itively correlated, and the giant populace measurement and non-stop
boom fashion are the essential motives because China is one of the
greatest greenhouse fuel emitters in the world, so it is essential to find
out about the effect of populace measurement on regional carbon emis-
sions. Population factors mainly affect the carbon emissions of regional
energy consumption through two modes: “crowd effect” and “civiliza-
tion effect”. The “crowd effect” means that the larger the population,
the greater the demand for energy [16]. The greater the resulting CO2

emissions, i.e., the positive driving effect on carbon emissions. In sum-
mary, the impact of populace elements on regional carbon emissions
is uncertain. In this paper, we pick out the year-end resident populace
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variety to replicate the cutting-edge populace measurement of an eastern
province, which is expressed via PS.

3 Decomposition of Energy Carbon Emission Drivers

3.1 Overall Decomposition Results

The LDMI decomposition mannequin is utilized to decompose the strong
carbon emission elements in an eastern province of China year by way of
year, and the contribution of every impact to the boom of carbon emission is
obtained, as proven in Figures 1 and 2.

From Figures 1–2, the energy structure effect contributes the most carbon
emissions in 2008–2010; the energy intensity effect contributes the most
negative carbon emissions in 2016–2018; the industrial structure effect con-
tributes the most negative carbon emissions in 2008–2010; the economic
output level effect contributes the most carbon emissions in 2018–2020; the
population size effect in 2014–2016 contribute the most carbon emissions. we
can see that the power shape impact is terrible in man or woman years and
effective in the relaxation of the years; the strength depth impact contributes
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negatively to carbon emissions; the industrial shape impact has each effec-
tive and poor effects; the financial output degree impact and the populace
measurement impact are positive.

3.2 Specific Breakdown of Each Factor

(1) Economic growth effect
From 2000 to 2020, the cost delivered of primary, secondary, and tertiary
industries multiplied from 120.21 billion, 286.78 billion, and 206.42 billion
RMB to 621 billion, 332.74 billion, and 425.91 billion RMB, respectively.
Figure 3 suggests the contribution of monetary increase to carbon emissions
of three industrial sectors each and every 4 years. 2000–2020, the contribution
of the brought fee of primary, secondary, and tertiary industries to carbon
emissions are 260 million t, 11.75 billion t, and 2.50 billion t CO2 respec-
tively, which is equal to 0.51 million t, 3.86 million t, and 0.62 million t of
carbon emissions for each 10,000 yuan expand in the brought fee of primary,
secondary and tertiary industries respectively. China is nonetheless in the
stage of shut correlation between monetary improvement and carbon emis-
sions, and the percentage of energy-consuming industries in the enterprise is
nonetheless high, and industrial development extensively drives the boom of
carbon emissions, which is excluded from the developed nations that have
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Figure 3 Contribution of economic growth in the industrial sector to the change in carbon
emissions.

carried out vulnerable correlation or decoupling between financial increase
and carbon emissions.

(2) Energy intensity effect
Energy depth is one of the essential elements affecting carbon emissions.
With the enchantment of science and technology, energy-saving technologi-
cal know-how and gear have been popularized in China, and the administra-
tion of technique and system has been striving to “eat all the energy”, and
the power consumption per unit of GDP has been reduced. The power depth
of primary, secondary, and tertiary industries will minimize from 0.3, 2.5,
and 0.5 t of preferred coal per 10,000 Yuan in 2000 to 0.1, 0.6, and 0.1 t
of trendy coal per 10,000 Yuan in 2020. Figure 4 indicates the contribution
of power depth to carbon emission modifications in the three industrial
sectors, all displaying terrible effects. from 2000 to 2020, the strength depth
decreased in primary, secondary, and tertiary industries making contributions
−0.6 billion t, −6.07 billion t, and −1.26 billion t CO2, respectively, which
is equal to a discount in power depth of primary, secondary, and tertiary
industries for every 1 t of preferred coal/10000 yuan, which can minimize
three billion t, 3.2 billion t, and 3.14 billion t CO2. From this, it is clear
that the discount of electricity depth of the 2nd enterprise leads to the hugest
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Figure 4 Contribution of energy intensity of industrial sectors to the change in carbon
emissions.

carbon discount effect. Vigorous improvement of industrial power saving
and consumption discounts and non-stop optimization of industrial shape are
essential measures to limit carbon emissions.

(3) Industrial structure effect
By vigorously creating tertiary industries such as commerce and carrier
industries with low strength consumption and low emission, and optimizing
and adjusting secondary industries with excessive electricity consumption
and excessive emission, China’s industrial shape has changed significantly,
with the percentage of delivered fee of primary, secondary and tertiary indus-
tries in GDP altering from 19%, 47% and 34% in 2000 to 8%, 40% and 52%
in 2020. The share of principal enterprise decreases significantly, the share
of secondary enterprise decreases slightly, and the share of tertiary enterprise
will increase significantly. Table 1 suggests the contribution of the share of
three industrial sectors to the exchange of carbon emissions. 2000–2020, the
contribution of industrial shape to the trade of carbon emissions is −100
million t, −930 million t, and 360 million t of carbon emissions, respectively.
The poor impact of carbon emissions is most widespread in the secondary
industry, and the tertiary industry, due to its quicker development, indi-
cates a contribution to the increase of carbon emissions, however with a



Analysis and Prediction of Factors Influencing Carbon Emissions 93

Table 1 Contribution of the structure of the industrial sector to the change in carbon
emissions

Year First Production Second Production Three Production
2000–2004 −0.1 −0.5 0.5
2004–2008 −0.2 1.6 0.3
2008–2012 −0.4 −0.7 0.4
2012–2016 −0.2 −8.6 2.3
2016–2020 −0.1 −1.1 0.1
2000–2020 −1.0 −9.3 3.6

smaller impact. Overall, the enchantment of industrial shape has an increasing
number of robust offsetting impacts on carbon emissions and is one of the
essential instructions for carbon discounts in the future.

(4) Energy structure effect
The switch of high-carbon strength sources such as coal, oil, and herbal
fuel to zero-carbon strength sources such as water and surroundings and
the increasing cleanliness of power shape are the predominant methods to
decrease carbon emissions. From 2000 to 2020, the percentage of fossil
strength consumption in China declined from 93.9% to 86.2%, and the
share of fossil power consumption in the primary, secondary, tertiary, and
residential sectors all confirmed a lowering trend, whilst the share of smooth
strength consumption with electrical energy as the service increased. In the
thirteenth Five-Year Plan, all three industrial sectors and the residential region
exhibit carbon emission offsetting effects.

Figure 5 shows the contribution of the fossil energy structure of the three
industrial sectors and the residential sector to the change in carbon emissions.
Overall, the contribution of the energy structure of primary, secondary, ter-
tiary, and residential sectors to the change of carbon emission is 4.09 million
t, −449.35 million t, −98.6 million t, and −33.76 million t CO2, respectively,
totaling 570 million t CO2, and the effect of cleaner energy structure on
carbon reduction is becoming more and more significant.

(5) Residential energy price, per capita income, and population
size effects
The contributions of residential electricity prices, per capita profits, and
populace measurement to carbon emissions in the residential region are
proven in Table 2 residential area strength expenses measure the quantity of
strength bought per unit of income. An enlarge in electricity costs implies that
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Table 2 Carbon emission decomposition of the residential sector
Year Energy Price Effect Income Effect Population Effect
2000–2004 −1.1 0.6 0.2
2004–2008 −0.4 1.4 0.1
2008–2012 −1.1 2.3 0.1
2012–2016 −0.7 2.1 0.1
2016–2020 −0.5 0.7 0.1
2000–2020 −3.8 7.1 0.6

electricity spreading and wastefulness are curbed, decreasing residential car-
bon emissions. Thus, power fees substantially inhibit the boom in electricity
consumption. 2000–2020, the quantity of electricity bought per 10,000 yuan
in China decreases from 0.45 t of preferred coal to 0.11 t of well-known coal,
which is equal to a 68,700 yuan make bigger in the value of every 1 t of
general coal bump off by way of residents, with a full-size carbon emission
reduction impact and a strong rate impact of 380 million t of CO2.

Disposable income per capita is the most important driver of carbon
emissions growth in the residential sector. With the growth of residents’
income, energy services such as household lighting, heating, and cooking
drive the carbon emissions of the residential sector to increase. Disposable
income per capita has an “amplifier” effect. From 2000 to 2020, every $1
increase in annual disposable income per capita drives an increase of 27,000 t
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of carbon emissions from residential energy consumption, and the per capita
income effect increases by 710 million t of CO2.

Population growth also has a certain degree of driving effect on the
growth of residential energy consumption. 2000–2020, the increase in popu-
lation drives residential consumption to increase by 0.6 billion t CO2.

4 Carbon Emission Projection Based on the STIRPAT
Model

4.1 STIRPAT Model

The IPAT mannequin was once formally proposed with the aid of Ehrlich P
et al. [17] in 1972, and it is expressed as.

I = P ×A× T (15)

Where: I denotes environmental pressure; P denotes population; A denotes
affluence; and T denotes socio-technical level.

This model has a simple structure, but it is more widely used in the
study of environmental impact factors. And because the IPAT model treats
the relationship between environmental impacts and each driver as simply
a linear relationship of the same proportion, it cannot reflect the degree of
change in environmental impacts when the drivers change.

Based on the IPAT model, Dietz T et al. [18] proposed the STIRPAT
model to analyze the pressure generated by human factors on the envi-
ronment, transforming the IPAT model into a stochastic form that takes
into account the impact of separate changes in population, affluence, and
technological factors on the environment, which is expressed as follows:

I = a× P b ×Ac × T d × e (16)

where: a is the constant term; e is the residual term; b, c, and d are the index
terms of population, affluence, and socio-technical level, respectively, which
are also generally referred to as elasticity coefficients. When a = b = c =
d = e = 1, the STIRPAT model will be reduced to the IPAT model, when b,
c, and d the larger, it means the greater the degree of influence on I .

The STIRPAT model can be extended in practical applications to a variety
of factors that have a significant impact on environmental change, such as the
level of technology, energy consumption and energy industry structure, and
can maintain the superior performance of the STIRPAT model as a whole.
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Therefore, the STIRPAT model is widely used to study the relationship
between carbon emissions and various environmental influences.

The STIRPAT mannequin is a multivariate nonlinear equation, and in
order to facilitate the use of software programs to estimate the exponents in
it [19] and to get to the bottom of its heteroskedasticity, the two sides of the
equation are generally converted into a linear model by taking the logarithm
of the equation and obtaining the following form:

ln I = ln a+ b lnP + c lnA+ d lnT + ln e (17)

In order to find out about the influencing elements of carbon emissions
of electricity consumption in an eastern province, the model (17) is extended
with the actual situation of an eastern province, and the following model is
constructed:

ln I = ln a+ β1 lnP + β2 lnA+ β3 lnT

+ β4 ln J + β5 lnN + ln e (18)

Where: I is the carbon emission from energy consumption in an eastern
province (MtC); P is the population (10,000 people); A is the affluence,
expressed as GDP per capita (Yuan/person); T is the energy intensity, i.e.,
the ratio of energy consumption to GDP (tons of standard coal/10,000 yuan);
J is the urbanization rate; N is the energy structure; β1, β2, β3, β4, β5 is the
elasticity coefficient, indicating that when each 1% change in P, A, T, J, and
N, respectively causes β1%, β2%, β3%, β4%, β5% change in I.

4.2 Ridge Regression Analysis

The STIRPAT mannequin was once first analyzed with the usage of the
couple of linear regression algorithms encapsulated in SPSS software, and
R2 with variance inflation issue (VIF) used to be chosen as the comparison
criterion [20], and the regression effects are proven in Table 3, in accordance
to which the willpower coefficient R2 of the STIRPAT mannequin used to be
got as 0.99, which has a correct becoming effect, indicating that the accuracy
of the geared up curve of complete carbon emissions can attain 9%. However,
the VIFs of the STIRPAT mannequin are all & get; 10, and there is a hassle
of multicollinearity amongst the influencing factors, which leads to distortion
in the estimation of the STIRPAT mannequin or makes it hard to estimate
accurately.

Subsequently, in order to do away with the trouble of multicollinear-
ity amongst the influencing factors, this paper proposes a ridge regression
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Table 3 Multiple linear regression results
Non-standardized Covariance

Coefficient Statistic
Regression Standard Standardization

Parameter Coefficient Error Coefficient Significance Tolerance VIF

Constant Term 0.643 4.214 — 0.821 0.014 81.236
lnP 0.648 0.421 0.124 0.187 0.006 63.214
lnA 1.174 0.103 2.314 0 0.006 293.113
lnT 1.324 0.094 1.324 0 0.015 64.328
lnJ −0.014 0.463 −0.009 0.934 0.096 194.761
lnN 0.712 0.104 0.324 0 0.063 9.967

Figure 6 Ridge trace map.

approach to analyze the STIRPAT mannequin by calling the ridge regression
process in the SPSS software program [21], in which the values of the ridge
regression penalty time period K are from 0 to 1, and the step dimension is
0.01, with a complete of a hundred and one ridge parameter values; R2 is
chosen as the comparison criterion. The ensuing ridge hint plot is proven
in Figure 6.

From Figure 6, it can be viewed that in the ridge regression training, as
the K cost increases, the exchange of every has an effect on the issue regularly
stabilizes, however, the R2 fee progressively decreases, so it is fundamental
to choose the minimal K cost when R2 is the most and every impact thing
stabilizes, so as to gain the affect thing parameters with right magnitude
at the minimal sacrifice of accuracy. When K = 0.03, the coefficients of
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Table 4 Coefficients of STIRPAT model variables at K = 0.03

Regression Standard Standard
Parameter Coefficient Error Coefficient Significance
Constant Term −16.978 4.315 — 0.002
lnP 1.705 0.631 0.312 0.001
lnA 0.273 0.048 0.569 0
lnT 0.276 0.116 0.283 0.011
lnJ 1.176 0.269 0.317 0
lnN 1.720 0.324 0.297 0

the STIRPAT mannequin grow to be stable, and the most R2 is 0.969. This
suggests that the shape of ridge regression coaching is finest at K = 0.03, and
the accuracy of the equipped curve of complete carbon emission can attain
96.9%. In different words, the becoming accuracy is excessive and meets the
becoming necessities of the regression equation.

The ridge regression penalty term parameter was set to K = 0.03 in SPSS
software to train the STIRPAT model details, such as regression coefficients
and standard errors, as shown in Table 4.

It can be viewed that in accordance with the regression coefficients
of every influencing factor, the regression coefficients of the 5 influencing
elements of the complete population, affluence, urbanization rate, strength
shape, and technological know-how stage are all positive, indicating a
widespread high quality affect the relationship on whole carbon emissions,
and the large the regression coefficient, the improved the impact [22].
It can be considered that strength shape has the best influence on carbon
emissions, observed through the complete population, urbanization charge,
and science level, and affluence has the least effect on carbon emissions; and
all five influencing factors pass the significance test (Q < 0.05), eliminating
the problem of cointegration that exists when training the STIRPAT model
by linear regression. According to the ridge regression results, it can be
concluded that the constant term lna in the STIRPAT model is −16.978, and
the regression coefficients of total population (P), affluence (A), technology
level (T), urbanization rate (J) and energy structure (N) are 1.705, 0.273,
0.276, 1.176 and 1.72, respectively. In order to avoid the non-solution of the
STIRPAT model, the STIRPAT model is constructed by setting the random
error term lne=0. Thus, the STRPAT model is obtained as follows

ln I = −16.978 + 1.705 lnP + 0.273 lnA+ 0.276 lnT

+ 1.176 lnJ + 1.72 lnN (19)
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The exponential transformation of Equation (19) leads to the STRPAT
model that satisfies the accuracy requirement, i.e.

I = e−16.978P 1.705A0.273T 0.276J1.176N1.72 (20)

4.3 Historical Data Fitting

In order to ensure that the STIRPAT model can achieve the expected effect,
the historical data of each influencing factor from 2000 to 2020 were sub-
stituted into the STRPAT model to calculate the predicted value of carbon
emission from 2000 to 2020, and then compared with the real value of carbon
emission from 2000 to 2020 to verify the validity of the proposed STIRPAT
model, and the results are shown in Figure 7.

As can be viewed from Figure 7, the STIRPAT mannequin proposed in
this paper has an excellent standard fit, and the root suggests rectangular
error between the expected and proper values of carbon emissions is 6.1%.
The STIRPAT mannequin can meet the accuracy necessities and can be used
to predict the future carbon emissions of the region. In 2008 and 2009, due to
the impact of the financial crisis, the proportion of fossil energy consumption
and energy consumption intensity in the region decreased to a certain extent,
resulting in a slowdown in the growth rate of actual carbon emissions in that

Figure 7 Comparison of predicted and true values of carbon emissions from the STIRPAT
model.



100 K. Zhang et al.

year. However, due to the abnormal proportion of fossil energy consump-
tion and energy consumption intensity, the prediction values calculated by
the STIRPAT model in this paper show a downward trend compared with
2007, which makes the prediction error of 2008 and 2009 large. Due to the
uncertainty of future scenarios, a state of affairs comparable to the monetary
disaster in 2008 can also have an effect on the prediction of future carbon
emissions. In order to greater precisely analyze the improvement of future
carbon emission developments and decrease the effect of uncertainty of future
scenarios, this paper chooses the state of affairs evaluation approach mixed
with the STIRPAT mannequin to predict the future carbon emissions in the
region.

4.4 Analysis of Scenario Setting

Scenario evaluation is a qualitative forecasting approach that assumes the
continuation of modern insurance policies and improvement stipulations
into the future and develops an evaluation of the lookup object. It has the
benefits of environmental analysis, choice making, enhancing the adaptabil-
ity of STRPAT mannequin, and optimizing aid allocation, and is generally
utilized in sustainable improvement lookup and monetary and environmental
improvement forecasting. In this paper, three eventualities of high-speed
development, baseline improvement, and low-carbon improvement are set
for every influencing factor. By combining specific improvement situations
of every influencing factor, 9 unique improvement situations are obtained, as
proven in Table 5.

In this paper, we take 2020 as the base year, and set the parameters of
future strength structure, electricity intensity, monetary development, popu-
lace and urbanization charge beneath specific eventualities based totally on

Table 5 Scenario combinations
Scenario Energy Structure Urbanization Rate Total Population Affluence Level Energy Intensity

1 High-speed Low-carbon Low-carbon Low-carbon High-speed
2 High-speed Baseline High-speed High-speed High-speed
3 Baseline Baseline Baseline Baseline Baseline
4 Baseline High-speed High-speed Baseline Baseline
5 Low-carbon Low-carbon Low-carbon Low-carbon Low-carbon
6 Low-carbon Baseline Low-carbon Baseline Low-carbon
7 Low-carbon Baseline Baseline Low-carbon Baseline
8 Low-carbon High-speed Baseline High-speed Low-carbon
9 Low-carbon High-speed High-speed High-speed Low-carbon
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the LMDI decomposition effects in part 3.2 and applicable insurance policies
such as the 14th Five-Year Plan and the 2035 visionary desires of the region:
(1) In the base scenario, the fee of exchange of every influencing aspect
is primarily based on the corresponding price of trade of every influencing
factor; (2) beneath the high-speed improvement scenario, the proportion
of fossil electricity consumption in the power shape decreases slowly, the
strength depth is higher, and the regional monetary and populace increase
hastens in contrast to the baseline scenario; (3) underneath the low carbon
improvement scenario, the share of fossil electricity consumption decreases
faster, the strength depth is lower, and the regional financial and populace
increase slows down in contrast to the baseline scenario. increase charge
slows down.

Based on the constructed STIRPAT model framework for carbon emission
projections for different combinations of scenarios in Table 5, the obtained
results are shown in Figure 8, and their peak times and peak sizes for different
scenarios are shown in Table 6.

As seen in Figure 8 and Table 6, only Scenario 2 of the nine scenario
combinations does not peak by 2035. Among the remaining 8 scenarios, 4
scenarios, namely Scenario 1, Scenario 5, Scenario 6, and Scenario 7, can
achieve the carbon peak target by 2030. Therefore, these four scenarios were
selected for analysis.
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Figure 8 Comparison of carbon emissions in the region under multiple scenarios.
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Table 6 Predicted results of carbon bloom in the region under 9 combinations of scenarios
Scenario Year of Peak Carbon Emission Peak Carbon Emission
1 2027 471.34
2 Not Peaking —
3 2031 501.26
4 2034 561.78
5 2026 431.95
6 2027 458.78
7 2030 497.63
8 2031 513.65
9 2034 536.91

From the trends of the four scenarios in Figure 8, we can get that although
CO2 peaks around 2030 in Scenario 7 and completes the time target, the
carbon emission per unit GDP is still too high at this time, which does not
meet the carbon emission standards of the 14th Five-Year Plan and 2035
Vision for the region, and the carbon emission decreases slowly after peaking,
so it is difficult to reach the carbon neutral target in 2060. Scenario 1 and
Scenario 6, on the other hand, are expected to achieve the carbon neutrality
target by 2060 because of the declining population growth rate and the rapid
reduction of carbon emissions after reaching the peak. Scenario 6 has a
higher level of technology compared to Scenario 1, which accelerates the
transformation of energy structure and decreases energy intensity faster, and
can significantly reduce carbon emissions, although it does not advance the
time to peak. In Scenario 5, since the urbanization rate and per capita GDP
growth rate are lower than those in Scenario 6, the carbon peak time can be
advanced to about 2026, and the corresponding carbon emission peak is the
smallest, which can also maintain the rapid decline of carbon emissions after
the peak and achieve the carbon neutral target by 2060.

Based on the analysis of carbon emission prediction results, the following
suggestions are put forward for emission reduction:

(1) On the energy supply side, optimize the energy structure and pro-
mote the transformation of clean energy and electrification. In the rising
stage before carbon peaking, the allocation and regulation capacity
of the power system should be enhanced, and infrastructure construc-
tion such as natural gas, wind and photovoltaics, nuclear power and
hydropower should be increased. In the stage of emission reduction and
neutrality after carbon peaking, the energy supply side should get rid of
the use of coal energy, meet new energy demand through low-carbon



Analysis and Prediction of Factors Influencing Carbon Emissions 103

fuels and new energy, and provide support for the energy system to
achieve zero carbon.

(2) On the energy consumption side, focus on energy conservation and car-
bon reduction, and maximize energy utilization guided by technological
innovation. Promote the efficient transformation of energy consumption
in energy-consuming sectors such as industry, buildings, and trans-
portation, eliminate backward production capacity, optimize production
structure, promote low-carbon industrial production, and guide energy-
consuming sectors to transform from “energy reduction” to “energy
saving”.

5 Coercion of Energy Consumption Processes to Climate
Change

5.1 Correlation Analysis of Energy Consumption, Its CO2
Emission-related Indicators, and Climate Change

Based on the above evaluation of CO2 estimation of electricity consumption
in an jap province from 2000 to 2020 and end-use strength consump-
tion from 2021 to 2035, the correlation coefficients of complete strength
consumption, complete electrical energy consumption, industrial electricity
consumption, and CO2 emissions from end-use strength consumption have
been chosen to analyze the correlation coefficients with applicable local
weather indications such as nearby temperature trade and humidity exchange
in an jap province [23]. As proven in Table 7, the correlation coefficients of
power consumption warning signs and temperature exchange indications all
skip the importance take a look at the P = 0.01 level, with the best possible
correlation coefficient with the suburban temperature difference, which are

Table 7 Correlation coefficients of energy consumption and GHG emission indicators with
climate change indicators

Energy Consumption Indicator
Total

Total Industrial
Energy Energy Electricity CO2

City Climate Climate Indicator Consumption Consumption Consumption Emission

Temperature Variation

Average City
Temperature

0.82 0.81 0.76 0.71

Average Suburb
Temperature

0.57 0.56 0.54 0.52

Temperature
Difference

0.91 0.93 0.92 0.76
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larger than 0.9 and omit the magnitude take a look at the P = 0.001 level,
which suggests that there is a pretty considerable impact of greenhouse
gasoline emissions from strength consumption in an eastern province on the
city warmness island impact [24]; among them, the correlation coefficient
between total industrial energy consumption and peri-urban temperature dif-
ference is slightly higher than that of total energy consumption and electricity
consumption, indicating that industrial energy consumption in an eastern
province during the whole period of 2000∼2020 is the main factor leading
to the temperature difference between urban and suburban areas, and the
reason is mainly because the energy consumption structure of a province
in the east is dominated by industry, and the greenhouse gas emissions
brought by the energy consumption process mainly come from the industrial
sector. However, it should be pointed out that according to the above CO2

emission analysis of different industrial sectors in 2021∼2035, since 2000,
due to the rapid acceleration of urban construction in a province in the east,
the accelerated development of the tertiary industry, especially the devel-
opment of the transportation industry, and the improvement of urban living
standards. As a result, the energy consumption demand of the construction,
transportation, warehousing and postal industry, wholesale, retail industry,
accommodation, catering industry and living consumption sector is growing
rapidly. The ensuing expansion in CO2 emissions has been the major reason
for city warming and warmness island impact in an eastern province when
you consider that it entered a length of speedy urbanization.

As with the energy consumption indicator, the correlation between total
end-use energy CO2 emissions and temperature change is higher than that of
humidity change, with the highest correlation coefficient of 0.76 with the sub-
urban temperature difference, and passing the significance test at the P = 0.01
level, further confirming that CO2 emissions from the energy consumption
process are the main cause of the heat island effect; due to the small sample
data of end-use energy CO2 emissions, the correlation coefficient is lower
than that of the energy consumption indicator. Therefore, the correlation
coefficient is lower than that of energy consumption indicators.

5.2 Coercive Modeling of Energy Consumption on Climate
Change

Based on the analysis of correlation coefficients among the indicators above,
the indicators with high correlation coefficients were selected to further ana-
lyze the model of the coercive relationship between energy consumption and
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local climate change [25]. The correlation coefficient analysis showed that
industrial energy consumption had the highest impact on peri-urban tempera-
ture difference, and considering the completeness of the sample data [26], the
coercive model of energy consumption on peri-urban temperature difference
was analyzed with industrial energy end-use consumption from 2000 to 2020
as the independent variable and peri-urban temperature difference as the
response variable, and the regression analysis showed that the fitted equations
of both were.

y = −130.31x3 + 123.93x2 − 32.885x+ 3.0279, R2 = 0.91 (21)

As shown in Figure 9, the relationship between the increase in indus-
trial energy end consumption and the suburban temperature difference is
consistent with a cubic polynomial curve growth, the overall peri-urban
temperature difference increases with the increase in industrial energy end-
use consumption, mainly because the increase in energy consumption leads
to an increase in CO2, which in turn leads to an increase in peri-urban
temperature difference due to the greenhouse effect. Specifically, from 2000
to 2010, before the industrial energy terminal consumption of 2.3 × 109 kg
of standard coal, the change in the suburban temperature difference was
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Figure 9 Relationship between industrial energy end-use consumption and suburban tem-
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small and basically maintained at 0.4◦C; since 2010, the relationship has
been maintained close to linear, and the coercive effect of the increase in
energy consumption on the suburban temperature difference is significant;
since 2013, the curve growth starts to level off.

The correlation analysis of energy consumption indicators and temper-
ature change indicators shows that greenhouse gas emissions from energy
consumption have a highly significant effect on the urban heat island effect;
the correlation coefficients of total industrial energy consumption and subur-
ban temperature difference among energy consumption indicators are slightly
higher than those of total energy consumption and electricity consumption;
the coercive relationship between the increase of industrial energy consump-
tion and the suburban temperature difference is consistent with a cubic
polynomial curve growth; the rapid development of the tertiary industry since
2000 and the resulting increase in CO2 emissions are the main causes of
temperature increase and heat island effect in urban areas.

6 Conclusion

This paper adopts the LMDI decomposition technique to quantitatively ana-
lyze the elements of carbon emission adjustments in industrial and residential
sectors in an eastern province of China and uses the STIRPAT prediction
model to set nine different development scenarios to forecast the total carbon
emissions until 2035, and the conclusions are as follows.

(a) The LMDI decomposition consequences exhibit that from 2000 to
2020, amongst carbon emissions of three industrial sectors, monetary
increase indicates a massive fantastic effect, whilst electricity intensity,
industrial shape, and strength shape have terrible effects, with contri-
bution fees of 228.9%, −116.7%, −8.9% and −8.4%, respectively, and
the optimization of industrial shape and easy electricity shape play a
more and more giant role. In the residential sector, electricity shape
and electricity charge have terrible results on carbon emissions, with
contribution costs of −0.5% and −5.9%, respectively; per capita profits
and populace dimension have high-quality results on carbon emissions,
with contribution fees of 10.1% and 0.6%, respectively.

(b) The results of nine scenarios show that with low-carbon development
as the core in 2021–2035 and appropriate adjustment of development
strategies, the region is expected to achieve carbon peaking in 2026–
2030. The comparison analysis shows that keeping the urbanization
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rate and economic level growth rate unchanged, reducing the popula-
tion growth rate, and accelerating energy restructuring and emission
reduction technology development are the optimal emission reduction
planning paths in the region. Under this scenario, the region is able to
maintain a high rate of economic and urbanization development while
having a good ability to reduce emissions. The projection results show
that the region will reach the carbon peak in 2027, after which carbon
emissions will keep declining at a high rate, and is expected to achieve
carbon neutrality by 2060.

(c) The correlation coefficients of energy consumption indicators and tem-
perature change indicators all pass the significance test at the P = 0.01
level, among which the correlation coefficients with temperature dif-
ference are the highest, all of which are greater than 0.9 and pass the
significance test at the P = 0.001 level; among the energy consump-
tion indicators, the correlation coefficients of total industrial energy
consumption and temperature difference are slightly higher than those
of total energy consumption and electricity consumption; the coercive
relationship between the increase of energy consumption and the tem-
perature difference is in accordance with the third polynomial curve
growth.

Many scholars have analyzed the influencing factors of environmental
stress in different regions, but studies from a micro perspective such as at the
city and district level are more lacking, ignoring the possible intra-regional
variability. In addition, the drivers of environmental stress are different for
different research subjects, and the respective influencing factors need to
be refined. Therefore, when analyzing regional environmental stress, refin-
ing and decomposing the influence of each variable from a microscopic
perspective will be a direction for future research.
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