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Abstract

In power system operation and planning, the accuracy of short-term power
load forecasting is very important. Because of its powerful data processing
and modeling ability, deep neural network has become an effective tool to
accurately predict short-term power load. In this study, a short-term power
load prediction model based on deep neural network is designed, which
adopts deep long short-term memory and threshold period unit model, and
combines Boosting algorithm for model fusion. The results show that the
average absolute percentage error of the model fused by Boosting algorithm
is 0.07%, which is 1.02% lower than the average weight method and 0.59%
lower than the reciprocal error method. Boosting fusion model can effectively
reduce the overall prediction error and maintain high stability of prediction
error at peak, plateau and time sampling points, so as to achieve good
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prediction effect. Specifically, the MAPE of the model fused using Boost-
ing algorithm is 0.07% (95% confidence), which is 1.14% higher than the
average weight method and 0.79% higher than the reciprocal error method.
The design of short-term power load forecasting model based on deep neural
network can provide more accurate prediction for power system operation
and planning, and help to improve the operation efficiency and reliability of
power system. At the same time, the design and application of this model
also provide a new idea and method for the application of deep learning in
power system. The introduction of Boosting algorithm further improves the
prediction accuracy and stability of the model, which is a major innovation in
model design.

Keywords: RNN, global recurrent unit, short term power load, attention
LSTM, AdaBoost.

1 Introduction

Short term load forecasting plays a crucial role in broader energy man-
agement. Firstly, accurate predictions can help power companies dispatch
resources more effectively and reduce operating costs. For example, if the
power demand in the next few hours can be accurately predicted, the power
company can adjust the power generation in advance to avoid wasting
energy or power shortage. Secondly, short-term load forecasting also has
an important impact on the stability of the power grid. The stability of the
power grid requires a balance between supply and demand. If the predic-
tion is not accurate, it may lead to overload or insufficient power supply,
affecting the stable operation of the power grid. Therefore, accurate short-
term load forecasting can not only help power companies save costs and
improve economic benefits, but also an important means to ensure grid
stability and prevent power accidents. Deep neural networks have good
performance in predicting nonlinear data such as power loads, but as the
number of layers increases, the gradient of deep neural networks is easily
lost, making it difficult to handle complex function problems. The most
effective method at present is to use DNNs to estimate short-term power load
and find the best solution, so as to save maintenance costs while complet-
ing daily prediction [1, 2]. In the experiment, we analyzed the prediction
curves of DNNs, long short-term memory (LSTMs), global recurrent units
(GRUs), and single and combination neural networks (NNs), and compared
the relative errors. However, the problem of most DNNs at present is that
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the number of iterations is tooFor deep neural networks (DNNs), with the
increase of the number of layers, the gradient is easy to be lost, which
makes it difficult to deal with complex function problems. The most effective
method at present is to use DNNs to estimate short-term power load and find
the best solution, so as to save maintenance costs while completing daily
prediction [1, 2]. In the experiment, we analyzed the prediction curves of
DNNs, long short-term memory (LSTMs), global recurrent units (GRUs), and
single and combination neural networks (NNs), and compared the relative
errors. However, the problem of most DNNs at present is that the number
of iterations is too much, and the mean square error and relative error of
the evaluation are both greater than the actualFor deep neural networks
(DNNs), with the increase of the number of layers, the gradient is easy to
be lost, which makes it difficult to deal with complex function problems.
The most effective method at present is to use DNNs to estimate short-
term power load and find the best solution, so as to save maintenance costs
while completing daily prediction [1, 2]. In the experiment, we analyzed
the prediction curves of DNNs, long short-term memory (LSTMs), global
recurrent units (GRUs), and single and combination neural networks (NNs),
and compared the relative errors. However, the problem of most DNNs at
present is that the number of iterations is too much, and the mean square
error and relative error of the evaluation are both greater than the actual value,
which seriously affects the adjustment of the power grid to the energy struc-
ture [3]. During the period of rapid change, load fluctuations may increase,
which may be caused by a variety of reasons such as emergencies in the
system, weather changes or sudden increases in power demand. These load
fluctuations may have a negative impact on the stability of the power grid,
thus increasing the maintenance and operation costs. The rapid change in
power load may be caused by many factors, including system emergencies,
weather changes, or sudden increases in power demand. System emergencies
may include machine failures, power grid accidents, etc. These events may
cause short-term interruptions in power supply, leading to rapid changes
in load. Weather changes, such as temperature, humidity, wind power, and
rainfall, can also have a significant impact on electricity loads, especially
in areas where electricity demand is closely related to weather conditions.
Accurately predicting the rapid changes in power load is of great signifi-
cance for ensuring the stable operation of the power system and reducing
operating costs. However, in rapidly changing environments, the difficulty
of predicting power loads significantly increases. This requires the study
of more efficient prediction methods to cope with rapid changes in power
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loads. Therefore, different algorithms are required according to different
situations. For the short-term load forecasting (STLF) problem, a single NN
prediction model can be selected as the initial algorithm choice. Next, the
data is divided into different prediction models according to various NNs,
and optimized with STLF as the target [4]. The computational examples use
real grid data for analysis, and combine AdaBoost model, Attention LSTM
model and GRU model to establish the relevant mathematical algorithms
and prediction conditions. The proposed optimization model is solved in the
grid dataset, ultimately achieving the goals of shortening the construction
cycle and reducing costs [5, 6]. It is worth noting that, according to our
discussion, the improvement of the accuracy of the proposed model will
help power systems make decisions in the real world. This high accuracy
can not only provide more accurate short-term and long-term predictions, but
also provide more valuable insights for power system operators, thus helping
them make more informed decisions. The core of power system operation is
the balance of power supply and demand, which requires accurate prediction
of power load. Improving the accuracy of short-term power load forecasting
models can help power systems make decisions in the real world. High
precision forecasting not only provides more accurate short-term and long-
term predictions, but also provides more valuable insights for power system
operators to make wiser decisions. For example, in the electricity market,
power generation companies can develop reasonable generation plans and
trading strategies based on load forecasting, to avoid the impact of electricity
market price fluctuations caused by power supply and demand imbalance
on their economic benefits. In power system scheduling, system operators
can develop reasonable power scheduling plans based on load forecasting,
improve the operational efficiency of the power system, and reduce operating
costs. In addition, for power systems involving renewable energy, due to the
significant impact of weather and other factors on the output of renewable
energy, there is significant volatility. Therefore, accurate load forecasting is
of great significance for formulating reasonable renewable energy scheduling
strategies and ensuring stable operation of the power system. Through the
above research, the improved accuracy of this model can not only adapt to the
rapid changes in power load and provide guarantees for the stable operation
of the power system, but also provide practical application value for multi-
ple scenarios such as power market trading, power system scheduling, and
renewable energy scheduling. The research will be divided into four parts:
firstly, an overview of STLF based on DNN; secondly, STLF research based
on deep neural algorithms; then, experimental verification of the second part
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is carried out; finally, a summary of the research content and its shortcomings
is given.

2 Related Works

As NN is a complex nonlinear network structure composed of simulated
biological neurons, it integrates nonlinear complex functions into the network
structure and approaches arbitrary functions. The Eskandari H team found
that the electricity load size is related to external factors such as weather,
season, working days, weekends, and holidays. On this basis, a high-precision
hourly load forecasting model was established to improve the predictive per-
formance. LSTM and GRU can retain long-term memory. Multi-dimensional
feature values were used as inputs and inputted into GRU and LSTM for load
prediction per unit time. This method has more advantages than the current
research results on STLF both domestically and internationally [7]. Scholars
such as Oreshkin B N have focused on deep learning NN to effectively solve
the mid-term load forecasting problem in power systems. And it also owns
high representing ability for time series with trend, seasonality, as well as
significant randomness. This method is easy to implement and train, without
the need for data preprocessing, equipping with a prediction error reduction
mechanism. The accuracy and prediction bias of this NN are significantly bet-
ter than other similar networks [8]. Lu, D, and others combined three different
machine learning methods to predict the load distribution of the next day’s
nodes. On this basis, a data processing method is proposed. This algorithm
has better recognition performance than general regression NN. In addition,
the predicted load data using this method can also enhance the reliability of
the scheme [9]. Chafi Z S et al. put forward a STLF method on the foundation
of NN and Particle swarm optimization (PSO) algorithm. This method uses
PSO to find the optimal NN parameters to improve the predicting accuracy.
Through testing on the Iranian power grid, this method can accurately predict
power loads. The method first determines some NN parameters, including
the learning rate and hidden layers number. Then, PSO was used to find
parameters’ optimal combination. This method can achieve higher predicting
accuracy. On this basis, this method was applied to some actual power system
data and extensive comparative research was conducted. Compared with
other similar methods, this method has advantages in conducting STLF [10].
Jalali S et al. introduced a deep learning based NN for rapid forecasting
of power grid loads. This method optimizes the construction and hyper-
parameters of the network, thereby improving the prediction accuracy of
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the network. The experiment utilized actual data from the 2018 Australian
electricity trading system to verify algorithm effectiveness. This model has
obvious advantages compared to other models [11].

In summary, scholars and scientists have made contributions in DNN and
STLF. Many improved algorithms have been designed to meet more efficient
dataset processing and prediction algorithms. Meanwhile, considering the
good data processing performance of the GRU algorithm and the shortcom-
ings of the current STLF, using this method for STLF should have significant
application value in resource regulation of the State Grid.

3 Construction of STLF

In the optimization of short-term load forecasting (STLF), deep neural net-
works (DNN) are successfully applied, and the functions and constraints of
actual STLF examples are combined. A deep neural network is a machine
learning model capable of representing and learning nonlinear and complex
patterns through the connection and interaction of multiple layers of neurons.
Using this model, deep and complex patterns in power load data can be
captured more effectively, thus improving the accuracy of forecasts. In addi-
tion, individual and combined models of deep neural networks (DNN), Long
short-term memory (LSTM), and gated cycle units (GRUs) are analyzed in
depth. Long Short-term memory (LSTM) and gated cycle unit (GRU) are
two special recurrent neural networks (RNNS) that can process sequence
data efficiently. Through the combination of deep neural network (DNN),
long short-term memory (LSTM) and gated cycle unit (GRU), the time series
data of power load can be processed more effectively, and the accuracy of
prediction can be further improved. On this basis, the time series formula
and other methods are combined to further optimize the prediction model.
These methods take advantage of the statistical properties of time series data
to provide more information for the training and optimization of predictive
models. These research results have an important supporting role for the
development and application of power grid load forecasting technology, and
also have a positive strategic significance for industrial development.

3.1 Construction of DNN

NN originated in the 1950s, but at that time it was called a perception
machine. Although it also has three levels, scholars have found in their
research that the fatal drawback of a single level perceptron is that it is
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difficult to handle complex functions [12]. In the 1980s, with the continuous
development of mathematics, the first NN-multi-layer perceptron appeared.
This method uses a Continuous function based on sigmoid and tanh to model
the response of neurons to external stimuli. To solve this problem, scholars
used ReLU, maxout and other Activation function instead of sigmoid, which
formed today’s DNN. Except for the Activation function, its structure is no
different from the multi-layer perceptron [13, 14]. Expanding RNN along the
timeline yields Figure 1.

In Figure 1, RNN is a more reasonable solution when there are long
dependencies in the sequence data that cannot be directed. {x1, . . . , xt−1,
xt, xt+1, . . .} are time series data, st refers to the sample memory at time t,
w stands for the weight between hidden layers, u means the input sample
data weight, and v is the output sample weight. From this, Equation (1) can
be obtained. 

h1 = ux1 + ws0

s1 = f(h1)

y1 = g(v · s1)
(1)

In formula (1), f and g are activation function. s0 and s1 are the sample
memory at time 0 and 1, respectively. x1 is time series data. If advancing at
that moment, Equation (2) can be obtained.

ht = uxt + wst

st = f(ht)

yt = g(v · st)
(2)

Equation (2) represents the formula for RNN forward propagation, where
all parameters are shared. And the length of input and output data may
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not necessarily be completely consistent. In practical applications, with the
prolongation of data timeline, the model depth continues to increase, and
RNN cannot learn long-term dependencies well. Usually, Back Propaga-
tion Through Time (BPTT) is used to train RNN, which involves the first
few steps’ network state [15]. Further advance mapping was performed on
sequences {x1, . . . , xt−1, xt, xt+1, . . .} through Equation (3).

st = f(wst−1 + uxt) (3)

In Equation (3), st−1 means the previous moment’s mapping state, and
st is the next mapping state. Equation (4) is the loss function gradient with
respect to parameter Lt EE at time θ.

∇θLt =
∂Lt

∂θ
=

∑
t≤T

∂LT

∂sT

∂sT
∂st

∂st
∂θ

(4)

In Equation (4), ∇θLt stands for the gradient. The matrix ∂Lt
∂θ is divided

into ∂LT
∂sT

, ∂sT
∂st

and ∂st
∂θ . Then, the matrix ∂sT

∂st
is decomposed according to the

chain rule in Formula (5).

∂sT
∂st

=
∂sT
∂sT−1

∂sT−1

∂sT−2
· · · ∂st+1

∂st
= f ′

T f
′
T−1 · · · f ′

t+1 (5)

In Equation (5), when RNN needs to store long-term information,
|f ′

t | < 1 is required. But the gradient itself will disappear over time, and the
gradient will converge exponentially until 0. When |f ′

t | > 1, the gradient will
explode, and the network will also fall into local instability [16]. For LSTM,
after adding three logical control units, Figure 2 shows its structure.

In Figure 2, the gating units of three logical principles are the forgetting
gate in red, the input gate in green, and the output gate in blue. The gating
device can be seen as a fully connected hierarchy that can be used to update
and store LSTM data. The forgetting gate is the most core component in
LSTM, used to forget irrelevant information. The input gate performs oper-
ations on the input information and stores it in memory. The output gate
controls the memory unit to effect the current output value. Equation (6) is
the forgetting door activation function.

σ(x) =
1

1 + e−x
(6)

In formula (6), σ(x) is a nonlinear activation function, which can describe
the information passing degree. When the output value is 0, meaning that
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information can’t pass through. When this value is 1, meaning that all
information can pass through. Equation (7) is the forgetting gate calculation.

ft = σ(Wxfxt +Whfht−1 + bf ) = σ(WfV + bf ) (7)

In Equation (7), f refers to the forgetting gate, the time step is f , the
input of the hidden layer is xt, the output is ht, W means the network weight
matrix, and V represents the bias vector. From this workflow to the input gate,
Equation (8) is the input gate calculation.

it = σ(Wxixt +Whiht−1 + bi) = σ(WiV + bi)

c̃t = tanh(Wxcxt +Whcht−1 + bc) = tanh(WcV + bc)

ct = ft ⊗ ct−1 + it ⊗ c̃t

(8)

In formula (8), tanh refers to the input gate, tanh means the input
information, ct stands for the memory unit, tanh is the activation function,
and its interval is [−1,1]. The gradient around 0 increases with 0 as the center.
tanh converges more quickly, thus following the output value formula of the
output gate and hidden gate in Equation (9).{

ot = σ(Wxoxt +Whoht−1 + bo) = σ(WoV + bo)

ht = ot ⊗ tanh(ct−1)
(9)

In Equation (9), o represents the output gate. LSTM’s advantage lies
in solving the gradient vanishing and explosion in long time series. To
further improve the NN performance, scholars have proposed an attention
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mechanism. This mechanism simulates the human brain in a specific environ-
ment, focusing only on one event while neglecting other things. Its essence is
to focus more attention on information that is helpful for solving problems,
rather than wasting time in noise. This mechanism can not only record
different types of information, but also use information weights to measure
the weight of different types of information [17]. Figure 3 shows the working
principle of this mechanism.

In Figure 3, the attention mechanism model can assist us in select-
ing critical inputs for each subsequent stage from the previous hierarchy.
The algorithm uses three steps to obtain the main values: firstly, based on
the search results of the search results, combined with key information, the
similarity score between the two is obtained. Secondly, the initial scores
in step 1 were standardized using the maximum soft maximum method to
obtain weighting coefficients within the range of [0,1]. Then, the values were
weighted and added with different weights to obtain the final result. And from
this, the hidden layer state values in Equation (10) were obtained.

αki =
exp(Ski)∑Tx
j=1 exp(Ski)

Ski = v tanh(Whk + Uhi + b)

C =

Tx∑
i=1

αkihi

hk′ = H(C, hk, xk)

(10)
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In Equation (10), αki means the attention weight of the hidden layer state
of the historical input to the current input. hk′ is the hidden layer state value
of the final output node. GRU has conducted more in-depth research on the
problems faced by LSTM. The design purpose of three “gates” in LSTM is
to remove or add input information to the neural unit, thereby controlling the
state of the unit [18, 19]. Figure 4 shows the structural units of GRL.

In Figure 4, GRU has made improvements to this “gating”. In LSTM,
an “update gate” is used instead of an input gate and a forgetting gate,
replacing three “gates” with two “gates”. In this way, there are only two
“reset gates” left in GRU. Among them, the update gate is responsible for
controlling the transmission of past state information in the current state,
determining the amount of new state information that includes past state
information. The reset gate is responsible for how many states in the past
need to be ignored. By resetting the gate, GRU can selectively retain or forget
past information. Equation (11) is the internal Formula of GRU.

τt = σ(Wτht−1 + Uτxt + bτ )

rt = σ(Wrht−1 + Urxt + br)

h̃t = tanh(Wτ (rtht−1) + Uhxt + bh)

ht = (1− τt)ht−1 + τth̃t

(11)

In Equation (11), h̃t represents the integration of input and output BB
of the previous hidden layer. Wτ , Wr, Wh, Uτ , Ur, Uh, bτ , br and bh are
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the units weight matrices. Compared with LSTM, GRU method outperforms
LSTM in training effectiveness. Nowadays, GRU technology is widely used
in many aspects. For example, GRU networks have replaced LSTM networks
and been used for language modeling.

3.2 Construction of STLF for Single NN and Combined NN

For the modeling of a single NN, unlike other models’ 2D data, NN is a 3D
data input, and Figure 5 shows the input structure after converting data into
3D data.

In Figure 5, T means the timeline and F is the input feature number.
Based on the sampling points of historical load, external factors such as dates,
workdays, months, trends, and holidays were predicted for various indicators,
and output was made for the sampling points. However, the hidden layer
can be single or multiple layers. A single hidden layer network can be used
to handle various complex problems. However, compared to this, multiple
hidden layers have better promotion ability and higher prediction accuracy.
However, as hidden layers increases, it can also cause the network to become
more complex and the training time to become longer. So, when selecting
hidden layers, it is not only necessary to consider the accuracy of learning, but
also the time-consuming calculation. Hide layer nodes based on experience,
as shown in Equation (12).

m =
√
l + n+ α (12)

In Equation (12), m is the hidden layer nodes number, l is the input layer
nodes number, n is the output layer nodes number, and α is a constant within
1–10. NN uses activation function, which brings nonlinear factors into the
model. Because past power loads were all positive, and the predicted loads
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were also positive. Therefore, the activation function from NN input layer
to hidden layer will use ReLU function. Activation function from hidden
layer to output layer will use linear function. Adam optimal method can
iteratively adjust NN weights based on training samples, and has the char-
acteristics of simple implementation, fast operation speed, and low storage
space requirements. The Ensemble learning prediction model is used to
improve, so Figure 6 is the integrated model framework.

In Figure 6, this method mainly synthesizes the prediction data of two or
more individual models to obtain a comprehensive prediction result. By ana-
lyzing a single model and analyzing various factors, a single model with good
predictive performance was selected and combined [20]. The combination
model based on the average weight method is the most simple and conve-
nient. It directly gives the selected single model the same weight without
considering any situation in Formula (13).

fprei =
1

q
(i = 1, 2, . . . , q) (13)

In Equation (13), q means the model. i is the i-th model weight. And it is
further expanded into the integrated model’s formula in Equation (14).

fpre =
n∑

i=1

yifprei (14)

In Equation (14), fpre means the predicting result of ensemble method,
and fprei is the prediction result of the i-th model. This method utilizes
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polynomial joint modeling to reduce joint modeling errors and improve
prediction accuracy by weighting individual patterns with small deviations.
The error used in the combined model is the average absolute percentage
error, also known as MAPE. Equation (15) is the integrated model of the
reciprocal error method.

ω1 =
ε2

ε1 + ε2

ω2 =
ε1

ε1 + ε2

fpre = ω1fpre1 + ω2fpre2

(15)

In Equation (15), ωi is the weight coefficient, and εi is each model error.
The integration method refers to a meta algorithm that combines multiple
machine learning techniques into a prediction model. Currently, this method
includes a type of parallelization algorithm represented by Bagging, where
individual learners do not have strong dependencies with other learners and
can be generated simultaneously. Boosting, on the other hand, is a typical
sequential algorithm where each learner has strong dependencies and needs to
be generated sequentially. The study aims to use XGBOOSt as the foundation
and BOOSTling’s integrated learning method to fuse individual prediction
models. Compared with other machine learning methods, XGBoost has two
major advantages. Firstly, while improving the predicting accuracy, the com-
plexity and subsequent pruning have been optimized, making it less prone
to overfitting and more robust. Secondly, the computational efficiency of this
mode has been significantly improved. In theory, this new modeling method
has accuracy, robustness, and efficiency.

4 Analysis of STLF Results

When the scale of deep learning networks changes, their computational
load and memory overhead also increase. At present, the prediction model
based on Root-mean-square deviation (RMSE) and Average Relative Error
(MAPE) is reasonable. However, the quality of the results is not high and not
strict enough to guarantee the optimal solution. Therefore, it is difficult to
achieve ideal results when solving complex optimization problems. When a
single forecasting model is affected by external factors, it will produce lag,
leading to poor forecasting performance. In contrast, the prediction results
obtained by the integrated algorithm have higher computational efficiency
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and larger space. So it is more suitable for combinatorial optimization
problems.

4.1 Analysis of Prediction Models Based on a Single NN

The experimental environment was chosen as Python version 3.7 and pro-
grammed in Spyder. We used Keras and TensorFlow tools to construct a deep
learning model. The dataset is sourced from the State Grid of Xi’an City,
Shaanxi Province, China, and is based on the actual load data of the power
grid. The size of the dataset is 16 GB/M, and its features include background
information, data type, data source, etc. To evaluate the performance of the
model, a series of experiments were conducted, covering 675 sampling points
over a 7-day period. When evaluating model performance, two key indica-
tors were used: root mean square error (RMSE) and mean absolute percentage
error (MAPE). The root mean square error (RMSE) is used to reflect the
difference between the predicted and actual values of the model, and its
magnitude can effectively measure the stability of the model. The average
absolute percentage error (MAPE) is mainly used to evaluate the accuracy
of a model, which reflects the percentage error between the predicted value
and the actual value of the model, and its magnitude is directly related to
the accuracy of the model. The parameter table is shown in Table 1.

In Table 1, in order to comprehensively evaluate the performance of the
model, in addition to RMSE and MAPE, other evaluation indicators such
as MAE and MPE can also be considered. In addition, the training time and
prediction time of the model can also be evaluated to understand its efficiency.
Figure 7 shows each NN single model’s structure.

Figure 7 shows the one week prediction results of recurrent NNSTLF.
From Figure 7(a), the load trend predicted by RNN is generally similar to
the real curve. In the sampling point area where the electricity consumption
changes steadily, the prediction is more accurate. However, in the peak and
valley values where the load fluctuates greatly, the prediction error signifi-
cantly increases. In Figure 7(b), from load curve’s overall prediction results,
compared with the RNN model, LSTM has improved overall prediction
accuracy and maximum prediction performance. From Figure 7(c), this single
model also improves the fitting degree of the load peak, and its error fluctua-
tion is relatively stable, with overall good prediction performance. In LSTM,
the use of attention mechanisms can effectively improve the performance of
general LSTM models, thereby demonstrating the advantages of attention
mechanisms. Figure 8 shows the range of P-values for each point per week.
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Table 1 Parameter information of the experiment
Parameter Description Detailed Description
Programming
Environment

Python 3.7 Python 3.7 is used for
programming due to its strong
stability and compatibility.

Programming Tool Spyder Spyder is chosen as the
programming tool, as it is a
powerful environment for Python
scientific computing.

Deep Learning
Framework

Keras, TensorFlow Keras and TensorFlow are
chosen as the deep learning
frameworks for their powerful
functionalities and ease of use.

Dataset Source National Power Grid of Xi’an
City, Shaanxi Province, China

The dataset is based on actual
load data from the national
power grid in Xi’an City,
Shaanxi Province, China.

Dataset Size 16GB/M The dataset size is 16GB/M,
which is relatively large and
beneficial for model training.

Dataset Features Background information,
data types, data sources, etc.

The dataset features include
background information, data
types, data sources, etc.,
providing a wealth of training
features.

Experiment Scope 675 sampling points within
7 days

The experiment is carried out
within 7 days, covering 675
sampling points, which helps to
comprehensively evaluate the
model’s performance.

Evaluation Metrics Root Mean Square Error
(RMSE), Mean Absolute
Percentage Error (MAPE)

RMSE and MAPE are chosen as
evaluation metrics as they can
comprehensively reflect the
stability and accuracy of the
model.

Role of RMSE Reflects the difference
between the model’s
predictions and actual values,
measures model stability

RMSE is used to quantify the
error between the model’s
predictions and actual values, the
smaller the value, the better the
model’s stability.

Role of MAPE Reflects the percentage error
between the model’s
predictions and actual values,
evaluates model accuracy

MAPE is used to evaluate the
average relative error of the
model’s predictions, the smaller
the value, the higher the model’s
accuracy.
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Figure 7 Comparison of RNN, LSTM, and Attention LSTM model predictions.

Figure 8 shows the p-value comparison of the pursuit point MAPE.
Compared with the attention LSTM model, the prediction error of the GRU
model is statistically more stable (p < 0.05). However, in the later prediction
stage, the p-value of the MAPE of the GRU model significantly increased
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Figure 8 Comparison of p-values for pursuit point MAPE.

at 8 am during the peak electricity consumption (p < 0.05), indicating a
significant decrease in its predictive performance during this time period.
On the contrary, the predictive advantage of the attention LSTM model in
the early peak time zone is statistically more significant (p < 0.05). And the
predictive advantage of the attention LSTM model in the early peak time zone
will be more pronounced in Figure 9.

From Figure 9, it can be observed that each independently constructed
neural network model exhibits results that are consistent with the actual
load variation trend. Among these models, the predictive values of deep
neural network models exhibit significant fluctuations, especially when the
sampling points vary greatly, and their predictive performance is not ideal.
In contrast, RNN exhibits good predictive performance in situations where
load fluctuations are relatively stable, but in the stage where the prediction
time is relatively long, there is a significant deviation between its predicted
results and the actual load, and the prediction curve shows a “Z” shaped trend.
For models with long-term memory characteristics, such as the Attention
LSTM mechanism, LSTM, and GRU, they have higher prediction accuracy
for stable samples and exhibit better fitting ability for invariant samples.
After comparing with the other three models, it can be concluded that the
prediction results of LSTM and GRU models are closer to the actual situation.
Electricity prediction, as a method of improving prediction accuracy using
non-stationary sequence data, faces the challenge of not being able to achieve
completely error free prediction. Therefore, the focus of researchers has
shifted towards reducing power operating costs and improving power supply
quality to address this challenge.
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Figure 9 Comparison of single neural network model results.

4.2 Analysis of Prediction Model Based on Combination NN

When designing a short-term power load prediction model based on deep
neural networks, the core step of model evaluation is to use a preprocessed
historical dataset during the model training stage, which includes records of
power load and other related influencing factors. The output of the model is
a prediction of future power loads. Secondly, the evaluation of model perfor-
mance is mainly based on selected performance indicators, which typically
include mean absolute error (MAE), mean square error (MSE), root mean
square error (RMSE), and mean absolute percentage error (MAPE). These
indicators can quantify the accuracy of model predictions, and the smaller
the error, the higher the prediction accuracy. Specifically, MAE measures
the average absolute deviation between predicted values and actual values;
MSE and RMSE are more sensitive to large errors by targeting the average
and square root of the square of the prediction error; MAPE represents the
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Figure 10 Comparison of Relative Errors for Predicting Weekly Points Based on Different
Combination Methods of AdaBoost-GRU.

ratio of prediction error to actual value, and is commonly used to compare
prediction results of different dimensions or units. Finally, during the model
testing phase, the prediction performance of the model for future unknown
data is simulated by verifying the dataset. These datasets were not used for
model training. By comparing the predicted results with the actual results,
the model’s generalization ability to invisible data can be evaluated. This
evaluation process effectively verifies the predictive performance of the
model and provides a basis for improving the model. AdaBoost, Attention LS
TM, and GRU were combined. The combination methods are average weight
method, error reciprocal method and combination method based on Ensemble
learning. The experiment selected 675 sampling points from a total of one
week of real power grid data in 2020 for validation, and selected MAPE
and RMSE as evaluation indicators. Different single prediction models and
different combination methods based on the AdaBoost-GRU model were
presented, and the results included corresponding confidence or reliability
descriptions. Among them, the prediction results of the long-term memory
neural network model have a higher confidence level compared to other single
machine learning models. Specifically, the MAPE of the model fused using
the Boosting algorithm is 0.07% (95% confidence), which is 1.14% higher
than the average weight method and 0.79% higher than the reciprocal error
method. This data shows that our combined model has not only significantly
improved prediction accuracy, but also has an advantage in reliability.

Figure 10 shows the relative errors of 672 sampling points during predic-
tion period using different combination algorithms based on AdaBoost-GRU.
Overall, three combination modes have improved prediction results, and
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the average weighting method has improved overall prediction performance.
However, there are still significant errors in the peak and flat valley sampling
points. The error inversion method can improve overall prediction effect,
but it cannot completely solve the problem of poor prediction performance
when the load changes sharply. Boosting fusion model can effectively reduce
overall prediction errors, and maintain high stability of prediction errors
at peak, flat valley, and over time sampling points, thus achieving good
prediction results. Taking into account the non-linear relationship in the
combined model based on MAPE results is more conducive to the correction
and improvement of the model results.

In Figure 11, MAPE results of different single prediction models and dif-
ferent combination methods based on AdaBoost-GRU are presented. Among
them, NN with long-term memory is superior to other single machine learn-
ing models. The model MAPE fused with Boosting algorithm is 0.07%,
which is a decrease of 1.02% compared to the average weight method and
0.59% compared to the reciprocal error method. The prediction accuracy
has been significantly improved, and this combined model has an advantage.
Figure 12 shows the comparative prediction results of a single model.
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In Figure 12, based on the XGBoost fusion model proposed by Boost-
ing, the weights of different individual models are dynamically adjusted to
achieve a combination of prediction results for the two models. From the
prediction result graph, we can see that after fusion, better learning of the
structural features of different models has been carried out, resulting in a
more stable prediction error output. Compared with the single model without
Boosting method, this method has significantly improved the prediction
accuracy of load peak and valley turning periods. By using the Boosting
algorithm and combining the advantages of AdaBoost and GRU methods,
more accurate forecasting of the power grid can be achieved, thus saving a
lot of operating costs.

5 Conclusion

In short-term load forecasting (STLF), we adopt a forecasting model based
on single algorithm and integrated algorithm, and verify various indicators.
The results of the comparison experiment show that compared with Attention
LSTM, the relative prediction error of GRU is more stable when comparing
MAPE of tracking points. However, in the subsequent forecast phase, the
MAPE of the GRU will increase at 8 o’clock during the morning peak of
electricity consumption. The predicted value of DNN generally has great
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fluctuation, especially when the sampling point changes significantly, the
predicted value is not ideal. Compared with the other three models, the LSTM
and GRU models’ predictions are closer to the actual situation. The three
combined models all improve the prediction results, and the average weight-
ing method improves the overall prediction results. However, there are still
significant errors in the sampling points of useful peaks and flat valleys. Error
inversion method can improve the overall prediction effect. However, it can
not completely solve the problem of poor predictive performance when the
load changes sharply. NN for long-term memory outperforms other single
machine learning models. The MAPE of the model integrated with Boosting
algorithm is 0.07%, which is 1.02% lower than the average weight method
and 0.59% lower than the reciprocal error method. Prediction accuracy has
been significantly improved, and combined models have advantages. Future
studies can explore the influence of timeliness factors on STLF. Therefore, the
results of this study have great reference value for guiding STLF. It has been
ensured that the conclusions effectively summarize the key findings of the
study. The drawback of this study is that in practical applications, timeliness
is also a key consideration in addition to the need for efficient budgeting of
short-term power loads. In the actual operation of power system, the change
of power load is often fast and complicated, which requires the power load
prediction to be not only accurate, but also fast. However, when considering
the accuracy of the prediction model, the timeliness of prediction is not
fully taken into account in this study. The importance of this contribution
cannot be overlooked, especially in relation to the optimization and timeliness
of predictive models. In the power system, the accuracy and timeliness of
load forecasting is very important, because it directly affects the operating
efficiency and stability of the power system. Any method and technology that
can improve the accuracy and timeliness of load forecasting has important
practical value. However, although a short-term power load forecasting model
based on deep neural networks is proposed in this study and its superiority is
verified by experiments, there are still many areas that need further research.
For example, how to further optimize the structure and parameters of the
prediction model to improve the accuracy of the prediction; How to adjust the
operation strategy of prediction model according to the demand of practical
application to improve the timeliness of prediction; And how to effectively
integrate the prediction model with the components and functions of other
power systems to improve the practicability of prediction. It is hoped that
future researchers can further explore these aspects to further improve the
accuracy and practicality of the prediction.
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