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Abstract

This study presents an innovative optimization method for resource schedul-
ing in multi-energy storage systems, focusing on improving resource allo-
cation while considering supply-demand flexibility and renewable energy
integration. As renewable energy gains popularity and multi-energy systems
become more complex, effective utilization of energy storage to achieve
supply-demand balance, optimize energy scheduling, and maximize renew-
able energy integration is crucial. To address this challenge, a Markov
dynamic model is developed to capture the dynamic changes in energy supply
and demand within the multi-energy storage system. The model is then solved
using a reinforcement learning approach to optimize resource scheduling
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decisions. Numerical simulations and case studies are conducted to validate
the effectiveness and feasibility of the proposed method, showcasing its
potential to enhance operational efficiency and reliability in multi-energy
storage systems amidst constantly changing energy patterns. This research
provides valuable insights and decision support for the design and operation
of multi-energy storage systems, contributing to the advancement of sustain-
able energy utilization and promoting sustainable development in the energy
sector.

Keywords: Optimization, resource scheduling, multi-energy storage sys-
tem, renewable energy, supply-demand flexibility, energy integration.

1 Introduction

In today’s energy landscape, multi-energy storage systems have emerged as
vital components, given their ability to address the critical aspects of supply
and demand flexibility, as well as the integration of renewable energy sources.
These systems have become increasingly significant due to the evolving
energy needs and the growing emphasis on sustainable energy solutions.
By effectively managing energy storage, these systems enable better balance
between energy generation and consumption, optimize resource allocation,
and facilitate the seamless integration of renewable energy into the grid.
With their versatile capabilities, multi-energy storage systems contribute to a
more resilient and sustainable energy infrastructure that can adapt to changing
energy patterns and support the transition towards a greener future [1]. With
the increasing penetration of renewable energy and the evolving complexity
of energy systems, the effective utilization of energy storage resources has
become paramount in achieving a balanced and sustainable energy sup-
ply [2]. These systems enable the integration of intermittent renewable energy
sources, such as solar and wind power, with the grid, thereby mitigating the
challenges associated with their variable generation profiles [3]. Multi-energy
storage systems significantly improve the supply-demand flexibility of the
grid by efficiently storing surplus energy during periods of high generation
and releasing it when demand is at its peak. These systems play a crucial role
in balancing the fluctuating energy supply and demand dynamics, ensuring
a reliable and stable energy supply [4]. This flexibility is vital for ensur-
ing a reliable and resilient energy supply, particularly as renewable energy
sources become more prominent and traditional fossil fuel-based generation
is gradually phased out.
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Furthermore, the integration of emerging energy sources, particularly
renewable energy, into the established energy infrastructure brings forth a
range of opportunities and challenges. The increasing adoption of renewable
energy technologies offers the potential to reduce carbon emissions, enhance
energy diversification, and foster sustainable development [5]. Multi-energy
storage systems serve as key enablers for the seamless integration of these
sources, as they provide a means to store and distribute renewable energy
efficiently [6]. By optimizing the resource allocation and scheduling deci-
sions within these systems, it becomes possible to maximize the utilization
of renewable energy, reduce curtailment, and minimize reliance on conven-
tional fossil fuel-based generation [7]. This integration not only contributes
to reducing greenhouse gas emissions and addressing climate change but
also enhances energy security and reduces dependence on external energy
sources [8]. Moreover, through effective management of the integration of
emerging energy sources, multi-energy storage systems provide a pathway
towards achieving a sustainable energy mix, promoting a cleaner and more
resilient energy future.

A comprehensive literature review on the optimal resource allocation of
multi-energy storage systems reveals several research gaps that need to be
addressed [9]. Firstly, the existing studies often focus on individual aspects
of resource allocation, such as economic optimization or system reliability,
without considering the holistic integration of multiple objectives [10]. This
limited scope fails to capture the complex interplay between different objec-
tives, such as maximizing renewable energy integration while ensuring grid
stability and minimizing operational costs [11]. Thus, there is a need for an
integrated approach that considers the multidimensional nature of resource
allocation in multi-energy storage systems.

Secondly, most existing research has relied on traditional optimization
techniques, such as linear programming or heuristic algorithms, which may
have limitations in handling the inherent uncertainties and dynamic nature of
energy systems [12]. As a result, the optimal resource allocation strategies
developed based on these approaches may not be adaptable to rapidly chang-
ing energy patterns and may not fully exploit the potential of multi-energy
storage systems [13]. To overcome this limitation, advanced optimization
methods that can effectively handle uncertainties and dynamic environments
are required.

To address these research gaps, the application of deep reinforcement
learning (DRL) emerges as a promising approach [14]. DRL combines the
power of deep neural networks with reinforcement learning algorithms,
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enabling the agent to learn optimal resource allocation policies through trial
and error interactions with the environment. By directly interacting with
the dynamic energy system, DRL can adaptively learn and optimize the
resource allocation decisions in a data-driven manner. This approach can
effectively capture the complex dynamics and uncertainties of multi-energy
storage systems, leading to more robust and flexible resource allocation
strategies.

This paper presents a novel approach for optimizing resource allocation in
multi-energy storage systems, with a focus on enhancing supply-demand flex-
ibility and integrating new energy sources. The work begins by establishing
a Markov dynamic model to capture the dynamic changes in energy supply
and demand within the system. Subsequently, a deep reinforcement learning
method is employed to optimize the resource scheduling decisions based on
the dynamic model. Through a combination of numerical simulations and
case studies, the proposed approach is validated for its effectiveness and fea-
sibility in improving the operational efficiency and reliability of multi-energy
storage systems. The study makes three main contributions:

(1) it provides an integrated approach for resource allocation that considers
multiple objectives and balances supply-demand flexibility and new
energy integration;

(2) it applies deep reinforcement learning to dynamically optimize resource
allocation decisions, accounting for the uncertainties and complexities
of energy systems;

(3) it demonstrates the potential of the proposed approach in addressing the
evolving energy landscape and improving the efficiency and reliability
of multi-energy storage systems, thereby contributing to the sustainable
development of the energy sector.

2 System Description

The studied system is a multi-energy storage system designed to optimize
resource allocation and enhance the integration of renewable energy sources.
It consists of several key components working together to ensure efficient
energy utilization and supply-demand balance. These components include
renewable energy sources, electricity energy storage units, thermal energy
storage units, a grid infrastructure, and end-users.

The system incorporates renewable energy sources such as solar pho-
tovoltaic (PV) panels and wind turbines. These sources generate electricity
from renewable sources such as sunlight and wind. However, the generation
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from renewable sources can be intermittent and fluctuating, making it
challenging to match supply with demand [15]. To tackle this challenge,
energy storage units are utilized to store surplus energy during times of high
generation and discharge it during periods of high demand or when renewable
energy generation is insufficient.

Electricity storage and heat storage are essential components of modern
energy systems that enable efficient utilization and management of energy
resources. Electricity storage systems, including Energy Storage Systems
(ESS), play a critical role in maintaining a balance between electricity sup-
ply and demand. They effectively store surplus electricity produced during
low-demand periods and release it during high-demand periods, alleviating
pressure on the grid and improving overall grid stability. ESS technologies
include batteries, flywheels, and pumped hydro storage, among others, which
store electricity in chemical, mechanical, or potential energy forms. On the
other hand, heat storage systems, known as Thermal Storage Systems (TSS),
are utilized to store excess heat energy generated by various processes.
Thermal Storage Systems (TSS) enable the capture and storage of thermal
energy during periods of low heat demand, which can be later released when
demand is high. This approach maximizes the efficiency of heat generation
systems by effectively utilizing excess thermal energy and ensuring it is
available when needed during peak demand periods. Heat storage tech-
nologies include water-based thermal storage, phase change materials, and
thermal storage tanks, which store heat energy for various applications such
as space heating, industrial processes, and district heating. The integration of
electricity storage and heat storage technologies into energy systems offers
multiple benefits. By storing excess electricity and heat from intermittent
renewable energy sources, energy storage systems enhance the utilization
of these sources and ensure a reliable and continuous energy supply. This
enables the efficient management of energy fluctuations, reduces reliance
on conventional power sources, and contributes to the integration of renew-
able energy into the overall energy system. Furthermore, it enables demand
management and load shifting, reducing peak demand and associated costs.
Overall, electricity storage and heat storage systems contribute to increased
energy efficiency, grid stability, and the integration of renewable energy
sources, facilitating the transition towards a sustainable and resilient energy
future.

The grid infrastructure is an essential component that facilitates the
bidirectional flow of electricity within the system. It connects the renewable
energy sources, energy storage units, and end-users. The grid serves as a
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conduit for energy exchange, allowing the excess energy from renewable
sources to be stored in the energy storage units and distributed back to the
grid during peak demand periods [16].

End-users are the final recipients of electricity within the system. The
multi-energy storage system caters to a diverse range of consumers, includ-
ing residential, commercial, and industrial users. Its primary objective is
to optimize resource allocation, ensuring that the energy demands of end-
users are met while maximizing the utilization of renewable energy sources.
By effectively managing energy storage and distribution, the system promotes
energy efficiency, cost savings, and the integration of clean and sustainable
energy into various sectors of the economy [17]. By intelligently managing
the allocation of stored energy, the system ensures a balanced supply-
demand relationship, improves energy efficiency, and reduces reliance on
conventional fossil fuel-based generation.

Overall, the studied multi-energy storage system is designed to optimize
resource allocation, integrate renewable energy sources, and maintain a reli-
able and sustainable energy supply. It leverages renewable energy generation,
energy storage technologies, grid infrastructure, and end-users to achieve
efficient and flexible energy utilization in line with the evolving energy
landscape and the goals of sustainable development.

3 Model Formulation

To provide a mathematical formulation for the optimal resource allocation in
the studied multi-energy storage system, let’s consider the following variables
and parameters: At each time point t, the variables in the system include
the energy stored in the energy storage units (Et), the power generated by
renewable energy sources (Pr,t), the power demanded by end-users (Pd,t),
the power exchanged with the grid (Pc,t), and the cost associated with
resource allocation (Ct). The parameters influencing the system are the cost
of storing energy in the energy storage units (Cs), the cost of renewable
energy generation (Cr), the cost of power exchange with the grid (Cg),
the charging efficiency of the energy storage units (ηch ), the discharging
efficiency of the energy storage units (ηdis), the maximum energy storage
capacity (Emax ) and the minimum energy storage capacity (Emin). It is
important to note that only the model for electricity storage is presented
here, while the model for heat storage follows a similar framework. Due to
space limitations, the details of the heat storage model are omitted in this
discussion.
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Objective:
Minimize the total cost of resource allocation over a given time horizon T:

Minimize
∑

t=1 to T

Ct (1)

Subject to:

1. Energy balance equation:

Et = Et−1 + (Pr,t − Pd,t)ηdis −
(
Pc,t − Pd,t

ηch

)
(2)

2. Energy storage constraints:

Emin ≤ Et ≤ Emax (3)

3. Power balance equation:

Pr,t − Pd,t = Pc,t (4)

4. Resource allocation cost:

Ct = Cs(Et − Et − 1) + CrPr,t + Cg|Pc,t − Pd,t| (5)

5. Non-negativity constraints:

Et ≥ 0, Pr,t ≥ 0, Pd,t ≥ 0, Pc,t ≥ 0 (6)

The objective function (1) of the proposed model focuses on minimizing
the overall cost associated with resource allocation in the multi-energy stor-
age system. This cost encompasses factors such as the expense of storing
energy in storage units, the cost of generating renewable energy, and the
cost incurred through power exchange with the grid. The energy balance
Equation (2) ensures that the energy stored in the storage units at a given
time t equals the energy stored in the previous time step, augmented by the
energy received from renewable sources and reduced by the energy demanded
by end-users and the energy exchanged with the grid. This equation guar-
antees a balance between energy supply and demand within the system,
enabling efficient utilization of resources and maintaining stability in the
energy network. The energy storage constraints (3) define the minimum
and maximum energy storage capacities. The power balance Equation (4)
ensures that the power generated by renewable sources minus the power
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demanded by end-users is equal to the power exchanged with the grid. The
resource allocation cost (5) incorporates the cost components associated with
energy storage, renewable energy generation, and power exchange. Finally,
the non-negativity constraints (6) ensure that all variables are non-negative.

The mathematical formulation presented in the study serves as a frame-
work for optimizing resource allocation decisions within the multi-energy
storage system. The objective of this optimization is to minimize the total
cost, taking into account various factors such as energy balance, storage
capacity limitations, and power balance requirements. By formulating the
problem in this manner, the model provides a systematic approach to making
resource allocation decisions that consider both economic efficiency and
operational feasibility. The inclusion of energy balance, storage capacity,
and power balance constraints ensures that the resulting solution aligns with
the system’s requirements and objectives. The specific solution methodology,
such as the application of deep reinforcement learning or other optimization
algorithms, can be employed to find the optimal resource allocation policies
within this formulation.

To further extend the reformulated resource allocation problem as a
Markov decision process (MDP), additional considerations can be incor-
porated: In the context of a MDP formulation, let’s define the system
state, action, reward, and return function for the given multi-energy storage
system:

1. System State: The system state represents the current state of the system
at a specific time point. In this case, the system state includes variables
such as the energy stored in the energy storage units (Et), the power
generated by renewable energy sources (Pr,t), the power demanded by
end-users (Pd,t), the power exchanged with the grid (Pc,t), and the cost
associated with resource allocation (Ct). The system state captures the
necessary information to make decisions regarding resource allocation.

2. Action: The action refers to the decision made by the controller or
optimizer based on the current system state. In the multi-energy storage
system, the action can be the allocation of power to various components,
such as deciding the power flow from renewable energy sources, adjust-
ing the power exchange with the grid, or managing the energy storage
unit’s charging and discharging. The action determines how the system
transitions from the current state to the next state.

3. Reward: The reward is a scalar value that represents the immediate
benefit or cost associated with taking a particular action in a given



Enhancing Resource Allocation for Multi-Energy Storage Systems 673

state. In the context of the multi-energy storage system, the reward
function evaluates the quality of the chosen action in terms of the overall
system objectives. The reward can be defined as a function of the costs
associated with resource allocation, such as the cost of energy storage
(Cs), the cost of renewable energy generation (Cr), and the cost of power
exchange with the grid (Cg).

4. Return Function: The return function, also known as the cumulative
return or the value function, is a measure of the long-term perfor-
mance or cumulative reward obtained by following a particular policy
in the MDP. It represents the sum of discounted future rewards over a
time horizon. The return function can be defined recursively based on
the immediate reward and the expected return from the next state, taking
into account the dynamics of the system. The goal is to maximize the
return function, which corresponds to maximizing the long-term benefits
or minimizing the long-term costs in the multi-energy storage system.

By formulating the problem as an MDP and defining the system state,
action, reward, and return function, one can apply reinforcement learning
algorithms or other optimization techniques to find an optimal policy for
resource allocation in the multi-energy storage system.

4 Case Study

The proposed energy management approach is evaluated through various
case studies using a Python implementation on a system with an Intel(R)
Core(TM) i5-8250U CPU running at 1.60 GHz (4 CPUs) and 8 GB of RAM.
These case studies encompass different system configurations and scenar-
ios, considering factors such as energy demand patterns, renewable energy
availability, storage capacities, and operational constraints. By leveraging the
computational capabilities of the chosen hardware and the flexibility of the
Python language, the approach proves its efficacy in optimizing resource allo-
cation and enhancing operational efficiency in multi-energy storage systems.
The results obtained from these case studies provide valuable insights and a
solid foundation for real-world implementation and further advancements in
energy management practices.

The operational parameters of the multi-energy storage system in this
study are derived from data provided in reference [18]. Waste heat recovery
equipment typically exhibits conversion efficiencies ranging from 70% to
80% [19], and a conversion factor of 70% is adopted here to represent the



674 X. Tian et al.

efficiency of waste heat recovery. To accurately represent different types of
generation units, the proposed model incorporates three distinct unit types,
with their operational data sourced from reference [20]. Both the ESS and
TSS are integrated into the model, with their parameters adjusted based
on ERCOT scheduling data [21]. For a more comprehensive understanding
of the system, detailed data on load information, value of lost load, and
renewable resource outputs can be found in reference [22]. By utilizing
these specific operational parameters and data sources, the study ensures the
model’s fidelity and provides insights into the performance and optimization
of multi-energy storage systems in real-world scenarios.

The operational strategies of the ESS and TSS are visualized in Figures 1
and 2, respectively. Figure 1 demonstrates that the ESS is designed to

Figure 1 Electricity storage scheduling decisions.

Figure 2 Thermal storage scheduling decisions.
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optimize cost savings by charging during low spot price hours (0:00–7:00,
23:00–24:00) and discharging during peak hours (8:00–21:00) when elec-
tricity prices are high. This approach allows the ESS to store energy when
it is less expensive and release it when it is more valuable, effectively
reducing overall electricity costs. In Figure 2, the scheduling pattern of the
TSS highlights its flexibility and independence from spot prices. The TSS
is not directly influenced by electricity price fluctuations but focuses on
efficiently managing heat demands. During off-peak hours of heat demands,
the TSS takes advantage of the excess capacity by charging and storing
thermal energy. Then, during peak hours, it releases the stored heat energy
to fulfill the increased heat demand. This strategy optimizes the utilization of
heat resources, improves energy efficiency, and ensures reliable heat supply
during high-demand periods. Overall, the combination of ESS and TSS in
the system allows for comprehensive optimization of both electricity and heat
resources. By considering different pricing patterns and heat demand profiles,
the system can achieve cost savings, reduce peak load on the electricity grid,
and ensure reliable and efficient supply of both electricity and heat to meet
consumer needs.

The study includes several test cases to examine the effects of waste heat
recovery and electric-thermal decoupling in a multi-energy storage system’s
operational costs. The Optimal Case serves as a benchmark, where the model
is optimized to minimize overall operation costs. In this scenario, the system
incorporates waste heat recovery and maintains electric-thermal decoupling
by integrating a TSS. By comparing the results of the Optimal Case with
other test cases, the study aims to assess the impact of these factors on the
operational costs of the multi-energy storage system. Case A focuses on
analysing the effect of removing the waste heat recovery process from the
system while keeping the electric-thermal decoupling intact. By comparing
the cost of Case A to the Optimal Case, the study aims to quantify the cost
savings achieved through waste heat recovery. Case B, on the other hand,
explores the consequences of removing the TSS, leading to the coupling
of power and heat production from the CHP unit. This configuration may
result in different operational costs compared to the Optimal Case, as it
eliminates the flexibility provided by the TSS. Lastly, Case C investigates the
combined impact of removing both waste heat recovery and the TSS. This
case serves as a reference point to evaluate the significance of each individual
component and their combined effect on operational costs. Table 1 provides a
cost comparison of total operation costs (in thousands of dollars, k$) among
the base case, Case A, Case B, and Case C. The base case has the lowest
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Table 1 Cost comparison
Total Operation Cost (k$)

Base case 56.26
Case A 162.32
Case B 85.20
Case C 285.62

Figure 3 Dynamic prices and fixed prices.

cost at 56.26 k$, while Case A has the highest cost of 162.32 k$. Case
B demonstrates a cost reduction compared to the base case, with a total
operation cost of 85.20 k$. Case C stands out as the most expensive scenario,
with a total cost of 285.62 k$. The table highlights the significant varia-
tions in costs among the different cases, indicating the impact of resource
scheduling decisions on operational expenses. Further analysis of the specific
factors and cost components involved would provide a more comprehensive
understanding of the cost differences and potential areas for optimization.

In order to evaluate the performance of the proposed model, the study
introduces two pricing modes: dynamic spot price and fixed price. The
dynamic spot price is obtained from market data provided by PJM Inter-
connection LLC, while the fixed price is calculated as the weighted average
of spot prices. Figure 3 presents a comparison between these two pricing
modes, allowing for an assessment of their impact on the performance of
the proposed model. By analyzing the results and differences between the
dynamic spot price and fixed price scenarios, the study provides insights
into the effectiveness and suitability of each pricing mode in optimizing the
multi-energy storage system’s operation. Meanwhile, Table 2 presents a cost
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Table 2 Cost comparison
Total Operation Cost (k$)

Base case 56.26
Case D 95.15

comparison between the base case and Case D in terms of total operation
cost. The base case demonstrates a total cost of 56.26 k$, whereas Case D
incurs a higher cost of 95.15 k$. This notable difference highlights that the
resource scheduling decisions or modifications made in Case D have resulted
in increased operational expenses. However, to gain a comprehensive under-
standing of the underlying reasons, further details from the corresponding
study or analysis are necessary. Conducting additional analysis, including
examining the methodology, resource allocation approach, impact evaluation,
and sensitivity analysis, would provide a more thorough assessment of the
cost comparison and the effectiveness of the resource scheduling decisions.

5 Conclusion

In conclusion, this study presents an innovative optimization method for
resource scheduling in multi-energy storage systems, focusing on enhanc-
ing resource allocation while considering supply-demand flexibility and the
integration of renewable energy. The proposed method utilizes a Markov
dynamic model to capture the dynamic changes in energy supply and
demand within the system. Furthermore, a reinforcement learning approach
is employed to optimize resource scheduling decisions.

Through numerical simulations and case studies, the effectiveness and
feasibility of the proposed method are validated. The results demonstrate its
significant potential in improving the operational efficiency and reliability
of multi-energy storage systems in the face of constantly changing energy
patterns. By efficiently utilizing energy storage, achieving supply-demand
balance, and maximizing renewable energy integration, the proposed method
contributes to the overall goal of sustainable energy utilization.

This research provides valuable guidance and decision support for
the design and operation of multi-energy storage systems. By optimizing
resource allocation, these systems can enhance their performance, pro-
mote sustainable development, and contribute to the efficient and reliable
utilization of renewable energy sources. The findings of this study have
implications for the broader field of energy and offer insights into addressing
the challenges posed by the increasing complexity of multi-energy systems.
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The practical application potential is limited by factors such as scal-
ability, sustainability, and cost-effectiveness. To address these challenges,
future work should consider implementing more efficient algorithms and
optimization techniques to enhance the approach’s scalability, adopting
adaptive algorithms and intelligent decision support systems to promote its
sustainability, and conducting cost-benefit analysis and return on investment
assessments to ensure its cost-effectiveness. By addressing these limitations,
the practical application potential of this approach can be enhanced, making
it suitable for broader applications.
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