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Abstract

Accurate prediction of carbon trading prices is crucial for guiding investors to
make informed decisions and assisting governments in formulating scientific
carbon trading policies. This paper introduces a multisource data-driven
carbon price composite forecasting model, aimed at enhancing prediction
accuracy through advanced data processing and analysis methods. The model
initially employs a secondary decomposition strategy, including Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) and Variational Mode Decomposition (VMD) methods, to decompose
the original data series into three sub-sequences of different frequencies.
Subsequently, it utilizes the Partial Autocorrelation Function (PACF) and
Random Forest algorithm for feature selection to determine the input vari-
ables for different frequency sequences and conducts in-depth analysis and
selection of influencing factors, including unstructured data. Furthermore, the
model employs a multiscale forecasting strategy, combining Particle Swarm
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Optimization (PSO) enhanced Bidirectional Long Short-Term Memory (BiL-
STM) and Extreme Gradient Boosting (XGBoost) models, along with the
Autoregressive Integrated Moving Average (ARIMA) method, to predict
based on the characteristics of different frequency components. Finally,
the forecasts are integrated using PSO-BiLSTM to form a comprehensive
forecast. Notably, given the high correlation between the trend series and
influencing factor variables, the model jointly predicts them. A case study
based on the Guangdong carbon market in China demonstrates that the
proposed composite forecasting model outperforms other benchmark models,
with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) values of 0.4009, 0.2699, and
0.5183%, respectively. This forecasting model provides an effective tool for
predicting and analyzing carbon price fluctuations, offering new insights for
precise carbon market price predictions.

Keywords: Carbon price forecasting, second decomposition, feature selec-
tion, unstructured data, influencing factors, bidirectional long short-term
memory network, extreme gradient boosting, particle swarm optimization.

List of Notations and Abbreviations

ARIMA: Autoregressive Integrated Moving Average
ANN: Artificial Neural Network
BiLSTM: Bidirectional Long Short-Term Memory
CEEMD: Complementary Ensemble Empirical Mode Decomposition
CEEMDAN: Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise
EMD: Empirical Mode Decomposition
EEMD: Ensemble Empirical Mode Decomposition
IMF: Intrinsic Mode Function
IMF1: The first Intrinsic Mode Function by decomposition
LSTM: Long Short-Term Memory
PSO: Particle Swarm Optimization
PSO-XGBoost: eXtreme Gradient Boosting for parameter optimization
using particle swarm optimization algorithm
PSO-BiLSTM: Bidirectional Long Short-Term Memory for parameter
optimization using particle swarm optimization algorithm
PACF: Partial AutoCorrelation Function
RF: Random Forest



Multisource Data-Driven Carbon Price Composite Forecasting Model 793

SE: Sample Entropy
VMD: Variational Mode Decomposition
XGBoost: eXtreme Gradient Boosting

1 Introduction

With the rapid development of the global economy, environmental and
energy issues have become increasingly prominent, with greenhouse gas
emissions posing a serious threat to sustainable human development. His-
torical experience has shown that relying solely on mandatory emission
reduction requirements or voluntary emissions reduction by economic enti-
ties makes it difficult to achieve emission reduction goals. The emissions
trading market for carbon dioxide stands as an efficient avenue to achieve
economic emission reduction within a market-driven framework. As a core
element of the carbon market, accurately predicting carbon trading market
prices, also known as “carbon prices,” can guide carbon market participants
and policymakers in making effective decisions, foster market stability, and
propel low-carbon economic growth. Therefore, improving the precision of
carbon price prediction has emerged as a vital focus in academic and industry
circles.

In recent years, scholars have proposed numerous prediction models to
enhance carbon price precision. Currently, prevalent carbon price prediction
methods can be broadly categorized into three types: traditional statistical
analysis methods, artificial intelligence methods, and combination forecast-
ing methods. The traditional statistical analysis methods have the advantages
of simplicity and computational efficiency [1–4]. However, carbon price
data is influenced by multiple factors such as energy prices, policy changes,
and weather variations, making it challenging for traditional statistical and
econometric methods to reflect the data’s nonlinear characteristics fully.
The development of artificial intelligence algorithms have provided new
directions for carbon price prediction. They can induce and summarize
complex nonlinear mapping relationships through statistical analysis of his-
torical data, effectively capturing the hidden nonlinear patterns in carbon
market prices [5]. These models exhibit excellent performance in learning,
generalization, computational speed, and prediction accuracy for carbon price
series [6], making them widely applied in carbon price forecasting [7–9].

Combination models aim to gather the advantages of various models,
avoid their limitations, and improve the predictive performance of each
model, thereby maximizing the capture of nonlinear features in carbon price
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data. As a result, AI-based combination forecasting models have become
the most favored method among scholars in the current research on carbon
price prediction. Among these models, the decomposition-ensemble com-
bination forecasting model, which combines decomposition and prediction
methods, is a commonly used approach in time series forecasting. This
method decomposes the time series, reducing noise while expanding the
sample size, thus enabling the extraction of more effective features. It has
been extensively applied in forecasting research across various domains, such
as energy prices [10, 11], stock price indices [12], soil temperature [13],
electricity load [14], wind speed [15], and more. Since carbon price data is
a complex time series with noise contamination, the Combined prediction
model based on the decomposition-ensemble framework has also emerged
as one of the mainstream prediction methods in carbon price research. Zhu
et al. [16] utilized Empirical Mode Decomposition (EMD) and hierarchical
clustering methods to decompose and reconstruct the EU ETS carbon futures
prices. They obtained eight Intrinsic Mode Functions (IMFs) and one residual
sequence through decomposition and then used hierarchical clustering to
reconstruct them into high-frequency, low-frequency, and trend components.
While simplifying the complex series, this approach revealed the short,
medium, and long-term fluctuations and trends in the carbon market. Sun and
Li [17] proposed an ensemble-driven carbon price prediction model based
on Complementary Ensemble Empirical Mode Decomposition (CEEMD).
Firstly, they employed CEEMD to decompose the original carbon price series
into a set of simple modal components. Then, they selected time lag features
from the components using the Partial Autocorrelation Function (PACF) and
used these features as inputs for multiple Long Short-Term Memory (LSTM)
models to obtain predictions for each component. Finally, they integrated
the results using the inverse CEEMD method to derive the ultimate carbon
price predictions. The findings demonstrated that compared to single LSTM
models and other traditional ANN models, the proposed model exhibited
higher prediction accuracy. The practice has confirmed the superiority of
the decomposition-ensemble framework-based prediction model within the
realm of carbon price prediction [6, 18].

In the realm of decomposition and ensemble forecasting methods, lim-
itations still persist. Zhou et al. [19] developed a carbon price forecasting
model based on the Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) approach and LSTM. Empirical analysis
revealed that CEEMDAN is not ideal for decomposing high-frequency com-
ponents such as the first IMF (IMF1), resulting in decompositions with high
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volatility and irregularity, which may adversely affect the overall prediction
accuracy. Subsequent improvements and studies have shown that a secondary
decomposition method based on Variational Mode Decomposition (VMD)
can effectively decompose highly volatile high-frequency sequences like
IMF1. Some scholars also reached similar conclusions in their research,
confirming the positive effect of using VMD for secondary decomposition
in predictions. Sun and Huang [20] proposed a new carbon price prediction
model that, based on the decomposition-ensemble forecasting framework,
utilized VMD for the secondary decomposition of IMF1 obtained through
EMD decomposition. In simulation research on the carbon market in Hubei,
China, their proposed model improved R2 by 43.9% and reduced MAPE
and RMSE by 1.5% and 43.0%, respectively, compared to the model with-
out VMD. Similarly, Zhou and Wang [21] also introduced a combination
forecasting model that utilized VMD for the secondary decomposition of
the strongest volatile IMF1 after the CEEMDAN decomposition of the
original sequence. Compared to the forecasting model without secondary
decomposition, this model improved R2, MAPE, and RMSE by 2.5%, 55.6%,
and 55.2%, respectively, enhancing the predictive precision. It demonstrates
that the secondary decomposition strategy based on CEEMDAN-VMD can
effectively improve the accuracy of the decomposition-ensemble prediction
model.

In addition, many studies on carbon price prediction are confined to the
application of historical data to build prediction models. Although historical
data contains important characteristics of carbon price changes, its prediction
results are often lagging behind. Moreover, carbon price volatility is influ-
enced by a variety of factors, and the analysis and study of these factors
are equally important for carbon price prediction. With the increasingly
developed internet environment, the use of search engines has become more
frequent, leading to the widespread presence of unstructured data. Studies
have indicated that incorporating unstructured data with a certain predictive
power into the forecasting process can provide a wealth of valid informa-
tion for time series prediction, thereby improving the accuracy of forecasts
[22, 23]. Therefore, it is necessary to explore the effective information pro-
vided by unstructured data to enhance the accuracy of predictions. Currently,
few studies have attempted to combine unstructured data for predicting
carbon trading prices.

The complexity of the carbon trading system endows the carbon price
time series with characteristics such as nonlinearity and high noise levels.
While adding unstructured data and influential factors can provide richer
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information for carbon price prediction, it also increases the complexity of
the data, potentially introducing more redundant or irrelevant features into
the model input. These redundant features not only increase the training time
but can also reduce the accuracy of predictions. Feature selection, which
identifies the best input features highly correlated with the predictive vari-
able [24], is a crucial step in developing artificial neural network prediction
models. Therefore, feature selection methods should be employed in carbon
price forecasting to achieve better predictive performance.

From the research mentioned above, it can be understood that: First, the
“decomposition-ensemble” forecasting framework exhibits excellent predic-
tive capabilities in the field of carbon price forecasting. However, a single
decomposition process yields poor results for the decomposition of highly
volatile IMF components. Relevant studies have shown that a secondary
decomposition strategy based on VMD can effectively address this issue.
Secondly, few studies have utilized multiple methods to predict based on the
characteristics of the subsequences of different frequencies obtained from
the decomposition. Moreover, carbon price forecasting studies that introduce
influencing factor data rarely consider unstructured data such as web search
indexes.

Therefore, this paper introduces unstructured data and other external
influencing factors, and based on multi-source data, proposes a combined
prediction model that combines quadratic decomposition strategy, feature
selection method, and multi-scale integrated prediction strategy includ-
ing Bidirectional Long Short-Term Memory (BiLSTM), eXtreme Gradi-
ent Boosting (XGBoost), and Autoregressive Integrated Moving Average
(ARIMA) models to predict features of different frequency components.
Among them, the PSO algorithm is used to optimize the parameters of
BiLSTM (PSO-BiLSTM) and XGBoost (PSO-XGBoost) models with large
parameter adjustment space, so as to improve the accuracy of carbon price
prediction. The innovations of this paper can be summarized as follows:

(1) This paper presents a novel composite forecasting model for carbon
prices. This model integrates a secondary decomposition strategy, fea-
ture selection methods, intelligent optimization algorithms, artificial
intelligence algorithms such as BiLSTM and XGBoost, and the tradi-
tional statistical method ARIMA, aiming to maximize the strengths of
each model while minimizing the bias or uncertainty that any single
model might introduce.

(2) A multiscale forecasting strategy is proposed, selecting appropriate
methods to predict based on the characteristics of subsequences at
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different frequencies. Herein, the PSO-BiLSTM model is used for pre-
dicting high-frequency sequences, PSO-XGBoost for trend sequences
and influencing factors, and the ARIMA method for low-frequency
sequences. Subsequently, an ensemble of the predictions from the
above processes through PSO-BiLSTM is performed to obtain the final
forecasting result.

(3) The study employs a multi-source data fusion strategy for forecasting,
conducting an in-depth analysis and comprehensive consideration of
carbon prices’ historical data, unstructured data, and other key external
influencing factors. This holistic data integration approach enables a
more precise capture and understanding of the complex dynamics affect-
ing carbon price fluctuations, providing solid data support for improving
the model’s forecasting accuracy.

(4) A feature selection mechanism has been established, conducting feature
selection in two phases for the influencing factors of carbon prices
and the internal features, i.e., historical carbon price data, to avoid the
interference of redundant features and help the model effectively capture
key features.

(5) Actual carbon price data were collected to establish nine comparison
models and three evaluation indicators. A case study based on the
Guangdong carbon trading pilot demonstrates that the proposed model
exhibits higher forecasting accuracy and universality.

The subsequent sections of this study are structured as follows: Section 2
primarily elucidates the foundational principles underpinning the employed
methodologies. Section 3 mainly describes the construction process of the
proposed combination forecasting model. Sections 4 and 5 primarily presents
the data selection, feature analysis, evaluation indicators, empirical research
process, and result analysis. Section 6 mainly expounds upon the central
discoveries of this paper and outlines avenues for future exploration.

2 Method

2.1 CEEMDAN

The CEEMDAN (Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise) method is an advanced signal processing technique used
for analyzing time series data. It adaptively decomposes a time series into
IMF components, ranging from high to low frequency with different time
scale characteristics, as well as a residue (Res) component. This method is
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particularly suitable for handling nonlinear and non-stationary time series of
carbon prices. The decomposition process of CEEMDAN is as follows:

Let x(t) be the original data sequence, Ej(·) be the j − th order modal
component generated by the EMD algorithm, and define IMF k as the k −
th order intrinsic mode component sequence generated by the CEEMDAN
algorithm. Let ωi(t) be the Gaussian white noise sequence added for the i−
th iteration, εk be the adaptive Gaussian white noise weight coefficient, and
t represent different time points. The basic implementation process of this
algorithm is as follows:

(1) Add Gaussian white noise sequences with zero means I times to the
original time series x(t), and construct a sequence xi(t)(i = 1, 2, . . . I)
containing I experimental decompositions:

xi(t) = x(t) + ε0ω
i(t) (1)

(2) Perform an Empirical Mode Decomposition (EMD) on xi(t), and
denote the resulting I first-order Intrinsic Mode Functions (IMFs) as
IMF i

1(t)(i = 1, 2, . . . , I). The first IMF(IMF 1(t)) obtained from the
decomposition is:

IMF 1(t) =
1

I

I∑
i=1

IMF i
1(t) (2)

At this moment, the only first-order (k = 1) residual sequence r1(t) is:

r1(t) = x(t)− IMF 1(t) (3)

(3) Add adaptive Gaussian white noise ε1E1(ωi(t))(i = 1, 2, . . . , I) to
the residual sequence r1(t), and use it as the new sequence for EMD
decomposition. Then, calculate the second-order IMF(IMF 2(t)) and the
residual sequence r2(t) of CEEMDAN:

IMF 2(t) =
1

I

I∑
i=1

E1(r1(t) + ε1E1(ω
i(t)) (4)

r2(t) = r1(t)− IMF 2(t) (5)

Where E1 represents the first IMF obtained through EMD.
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(4) And so on, the k − th residual sequence rk(t) and the IMF of the order
k + 1 are obtained as follows:

rk(t) = rk−1(t)− IMF k(t), k = 2, 3, . . . ,K (6)

IMF k+1(t) =
1

I

I∑
i=1

E1(rk(t) + εkEk(ω
i(t)) (7)

where Ek represents the k − th IMF obtained through EMD.
(5) When the obtained residual sequence cannot be further decomposed and

the number of extreme points does not exceed two, the CEEMDAN
decomposition is completed. At this point, the original signal is decom-
posed into several IMFs and one residual sequence, and the final residual
sequence satisfies:

R(t) = x(t)−
K∑
k=1

IMF k(t) (8)

If the final decomposition results in K modal components, then the
original carbon price sequence x(t) can be represented as:

x(t) =
K∑
k=1

IMF k(t) +R(t) (9)

2.2 VMD

The Variational Mode Decomposition (VMD) method, proposed by
Dragomiretskiy and Zosso [25], is a non-recursive signal processing tech-
nique specifically designed to address the issue of modal separation in
complex signals. VMD is capable of adaptively decomposing a complex
signal into a series of band-limited Intrinsic Mode Functions (IMFs), with
each IMF capturing a principal frequency component of the signal, thereby
facilitating easier analysis and processing of the decomposed components.
Unlike the classical Empirical Mode Decomposition (EMD) and its enhanced
version, CEEMDAN, VMD employs a variational approach to identify and
extract individual modal components within a signal. It exhibits robust resis-
tance to noise and can overcome problems related to mode mixing and
sensitivity to noise.
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(1) Construct a variational optimization model based on the objective of the
variational problem:

min
{uk},{ωk}

{
K∑
k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk(t) = f(t)

(10)

Where K represent the number of IMFs obtained from the decompo-
sition. {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK} denote the set
of all modal signals and their central frequencies from the decomposition.
∂t represents the partial derivative operator with respect to t. δ(t) stands for
the Dirac function, and ∗ denotes the convolution operator.

(2) To solve the above optimization problem, we introduce a quadratic penalty
factor α and Lagrange multipliers λ, transforming the constrained varia-
tional problem into an unconstrained variational problem. The constructed
augmented Lagrangian function is as follows:

L({uk}, {ωk}, λ) = α
K∑
k=1

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−
K∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

K∑
k=1

uk(t)

〉
(11)

(3) Initialize {u1k}, {ω1
k}, λ1, and n. Use f̂(ω), ûk(ω), and λ̂(ω) to represent

the Fourier transforms of f(t), uk(t), and λ(t), respectively. τ is the tolerance
for noise. In the Fourier transform domain, update {ûn+1

k }, {ω̂n+1
k }, and

{λ̂n+1
k } using the Alternating Direction Method of Multipliers (ADMM)

algorithm to search for saddle points in formula (11). The update equations
are as follows:

ûn+1
k (ω) =

f̂(ω)−
∑

i̸=k ûi(ω) + λ̂(ω)/2

1 + 2α(ω − ωk)2
(12)
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ω̂n+1
k =

∫∞
0 ω|ûk(ω)|2dω∫∞
0 |ûk(ω)|2dω

(13)

λ̂n+1(ω) = λ̂n(ω) + τ

(
f̂(ω)−

K∑
k=1

ûn+1
k (ω)

)
(14)

(4) The updates will be stopped When the stopping condition in formula (15)
is satisfied.

K∑
k=1

∥un+1
k − unk∥22/∥unk∥22 < ε(ε > 0) (15)

2.3 XGBoost

XGBoost (eXtreme Gradient Boosting) is a powerful machine learning algo-
rithm that is particularly effective for regression and classification problems.
It is built on a gradient boosting framework and utilizes decision trees as
its base learners. Boosting, an ensemble learning method, iteratively trains
weak learners (e.g., decision trees), focusing on samples misclassified by the
model in previous iterations and assigning them higher weights to correct the
errors, culminating in a strong model. As a tree-based model, XGBoost excels
in handling and capturing nonlinear relationships and complex interactions
between features. This gives it a distinct advantage in analyzing datasets
with multiple influencing factors. Therefore, this study chooses to employ
XGBoost for predicting and analyzing carbon price influencing factor data,
leveraging the model’s advanced computational efficiency and flexibility, as
well as its robust performance in dealing with diverse and complex data
structures. For details on XGBoost’s specific computational process, refer to
the papers by its creator, Tianqi Chen, et al. [26].

XGBoost has several parameters, and because some model parameters
significantly impact the results, it is necessary to optimize key parameters.
This study optimizes crucial parameters of XGBoost, such as the learning
rate, number of trees, tree depth, sample sampling rate, minimum child
weight, and the intensity of decision tree pruning, using the Particle Swarm
Optimization (PSO) algorithm. This is done to maximize the predictive
capability of the XGBoost model and enhance prediction accuracy.

2.4 BiLSTM

Long Short-Term Memory (LSTM) networks are a variant of Recurrent
Neural Networks (RNNs). They address the inability of RNNs to handle
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long-term dependencies, with their core being the use of memory cells
to retain long-term historical information and the adoption of specially
designed gate mechanisms (input gate, forget gate, and output gate) to select
information to be retained or forgotten. The input gate, comprised of a
sigmoid neural network layer, controls the entrance of new information;
the forget gate, formed by a sigmoid neural network layer and a pointwise
multiplication operation, manages the retention and forgetting of informa-
tion; the output gate works together with a tanh activation function and a
pointwise multiplication operation to transfer the cell state and input to the
output.

In processing time-series data, unidirectional LSTM network structures
have shown good predictive performance for nonlinear time series. However,
they can only capture information from previous nodes and are unable to
utilize the influence of subsequent node information on the current node.
Bidirectional LSTM (BiLSTM) employs two LSTM networks in opposite
directions, enabling the utilization of state information from both previous
and subsequent nodes to enhance prediction accuracy. The computation
of BiLSTM is divided into forward and backward calculations, where the
horizontal axis represents the bidirectional flow of the time series, and
the vertical axis indicates the unidirectional flow of information from the
input layer to the hidden layer and from the hidden layer to the output
layer. The main computational process of BiLSTM can be represented by
Equation (16): 

h+t = LSTM+(xt, ht−1)

h−t = LSTM−(xt, ht+1)

yt = W+h+t +W−h−t + by

(16)

Where h+t and h−t represent the outputs of the hidden layer from both the
forward and backward LSTM networks at time t, respectively. LSTM+ and
LSTM− denote the operations of the forward and backward LSTM, while
W+ and W− are the matrices containing the weights for the forward and
backward LSTM layers. by is the bias term of the output layer.

In this paper, PSO algorithm is used to optimize five parameters of
BiLSTM’s neural network, including the number of layers, the number of
neurons per layer, the number of samples per training, the learning rate and
Dropout rate, in order to improve its prediction ability in the carbon price
prediction task and obtain higher prediction accuracy.
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2.5 ARIMA

The Autoregressive Integrated Moving Average (ARIMA) model is a classic
method for analyzing and forecasting time series data. The basic form of
an ARIMA model is denoted as ARIMA(p, d, q), where d is the Integrated
order, representing the number of times a difference is made to make the time
series stationary. p is an AutoRegressive order and represents the observations
for the previous periods considered in the model. q is the order of the Mov-
ing Average, which represents the prediction error for the previous periods
considered in the model. Its mathematical expression is(

1−
p∑

i=1

ϕiL
i

)
(1− L)dXt =

1 +

q∑
j=1

θjL
j

 εt (17)

Where Xt is time series data; L is the Lag operator, which represents the
lag value of the time series. ϕ is the parameter of the autoregressive (AR)
term; θj is the parameter of the moving average (MA) term; εt is the error
term, which is usually assumed to be white noise.

2.6 PSO

The Particle Swarm Optimization (PSO) algorithm is a population-based
optimization technique that simulates the social cooperation mechanism of
bird flocking behavior for global searching, demonstrating significant effec-
tiveness in solving complex optimization problems. Its main idea involves
finding the optimal solution through cooperation and information sharing
among individuals within the population. Compared to conventional genetic
algorithms, the standard PSO algorithm simplifies the process by reducing
operations such as crossover and mutation, offering a simpler structure and
faster convergence.

When solving optimization problems, the PSO algorithm updates particle
velocity and position by tracking both the individual best particle and the
best particle across the entire population. This process can be delineated as
follows: In a D-dimensional search space, there is a particle swarm consisting
of m randomly initialized particles. At the t − th iteration, the position and
velocity of the i− th particle in the j− th dimension are denoted as Xt

i,j and
V t
i,j , respectively. Each particle continuously updates its position and velocity

to explore the entire state space by tracking its individual best solution ptbesti
and the global best solution gtbest found by the entire population. The ultimate
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goal is to gradually search for the optimal position, i.e., the optimal solution.
The updates of velocity and position follow formulas (18) and (19).

V t+1
i,j = ωV t

i,j + c1r1(p
t
best −Xt

i,j) + c2r2(g
t
best −Xt

i,j) (18)

Xt+1
i,j = Xt

i,j + V t+1
i,j (19)

Where ω represents the inertia weight, c1 and c2 are the learning factors;
r1 and r2 are uniformly distributed random numbers within the range [0,1].

2.7 PACF

The Partial Auto Correlation Function (PACF) is used to analyze the partial
auto-correlation relationships at various lag orders within time series data.
It describes the auto-correlation of a specific lag order after eliminating the
influence of other lag orders. PACF is often utilized to guide model selection
and the determination of input features in time series forecasting, helping
identify which lag orders are significant for modeling and prediction. By
analyzing the PACF, a better understanding of the structure within time
series data can be achieved, providing guidance for establishing accurate
forecasting models. For a time series Y , the PACF at lag i can typically be
represented as ϕki:

ϕki = Corr(Yt − Ŷt, Yt−k − Ŷt−k) (20)

Where, Yt represents the value of time series at time point; Ŷt and Ŷt−k

are the predicted values of Yt and Yt−k; Corr is the correlation coefficient.

2.8 RF

Random Forest (RF) is a classic machine learning algorithm introduced by
Leo Breiman in 2001. This algorithm combines a weak model – Classification
and Regression Trees (CART) – with the Bagging method and the Ran-
dom Subspace Method (RSM), incorporating both Bootstrap Aggregating
(Bagging) techniques and RSM technology. In RF, CART trees are con-
structed by randomly selecting a subset of samples from the dataset with
replacement, while the samples not selected are referred to as Out-Of-Bag
(OOB) samples. These OOB samples are utilized for internal validation of
the model, and the final output of the model is determined through a voting
mechanism.

This research employs the feature importance evaluation functionality
within RF to filter the input features for high-frequency sequences. The
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principle involves artificially altering the values of features (by adding white
noise) to compute the Out-Of-Bag (OOB) error on the model training set.
Since the OOB error serves as an unbiased estimate of the model’s generaliza-
tion capability, a greater increase in error signifies a larger impact of the vari-
able. Consequently, model features with minimal relevance to the prediction
variable are discarded, thereby enhancing the accuracy of the predictions.

The original OOB error of the RF model is denoted as Eoob, and the
OOB error of the model after adding noise to the sample feature t is denoted
as Eoobt. The importance of feature Ft can be calculated using Equation (21):

Ft =
Eoob − Eoobt∑
t∈T Eoobt − Eoob

(21)

2.9 MIC

The Maximal Information Coefficient (MIC) method, proposed by Reshef
et al., is a correlation analysis method based on information theory. For any
given pair of variables x and y, the mutual information (MI) between them is
defined as the expected value of the logarithmic ratio of their joint distribution
to the marginal distributions, reflecting the amount of mutual information
between the variables. MIC is determined by evaluating the maximum MI
across different grid partitions, thus providing a powerful tool for detecting
and quantifying the correlation between variables. The MI between variables
x and y can be defined as:

Ix,y =
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
(22)

Where, p(x, y) denotes the joint probability density function for variables
x and y, and p(x) and p(y) respectively denote the marginal probability
density functions for x and y.

2.10 Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistical measure used to evaluate
the strength and direction of the linear relationship between two variables.
In feature selection, this method can be employed to identify features that
are highly correlated with the target variable. Its value ranges from [−1, 1],
where: 1 signifies a perfect positive correlation, implying that as one variable
rises, the other variable also increases proportionally. −1 signifies a perfect
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negative correlation, implying that as one variable rises, the other decreases
proportionally. 0 signifies the absence of a linear relationship. For two vari-
ables x and y, the calculation formula for the Pearson correlation coefficient
r is as follows:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(23)

Where, xi and yi are the observed values of the two variables; x̄ and ȳ are
the average values of the two variables.

When used for correlation analysis involving multiple variables, Pearson
typically generates a correlation matrix, where each element in the matrix
represents the Pearson correlation coefficient between two variables. The cor-
relation matrix is extensively applied in areas like multivariate data analysis,
feature selection, and factor analysis.

2.11 SE

Sample Entropy (SE) constitutes a technique devised by Richman and Moor-
man to gauge the intricacy of time series, and it represents an improvement
over approximate entropy. In contrast to the latter, the computation of SE
remains unaffected by data length and exhibits better robustness and con-
sistency. When N is a finite value, the definition of sample entropy can be
expressed as follows:

SampEn(m, r,N) = − ln
Am(r)

Bm(r)
(24)

Where N represents the length of the input signal, m represents the
dimension, and r represents the tolerance of similarity.

3 The Construction Process of the Proposed Model

The carbon price combination forecasting model proposed in this paper refers
to the combined forecasting framework based on VMD secondary decompo-
sition proposed by Zhou et al. [19]. The modeling process is illustrated in
Figure 1, and steps for modeling are outlined as follows.

3.1 Secondary Decomposition

(1) The original carbon price series is processed using the CEEMDAN
method, decomposing it into several Intrinsic Mode Functions (IMFs).
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Figure 1 Flow chart of the mode.

(2) Based on the calculation results of the Shannon Entropy (SE) values for
each component series, all IMFs are classified into high-frequency, low-
frequency, and trend components, which are then aggregated to form
three new component series: the high-frequency, the low-frequency, and
the trend series.

(3) The VMD method is applied for secondary decomposition, resulting in
several new modal components.

3.2 Feature Selection

To obtain the optimal input features, this paper establishes a two-stage feature
selection mechanism. In the first stage, the PACF and RF are used for feature
selection on the high-frequency, low-frequency, and trend series, obtaining
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input variables of internal features. In the second stage, influence factors
are ranked and filtered by calculating their MIC and Pearson correlation
coefficient values. The specific process is as follows:

(1) First Stage – Internal Feature Selection

For the low-frequency and trend series, solve for PACF results up to the 30th
order, selecting lag orders that exceed the 95% confidence interval as input
variables for the low-frequency and trend series, respectively. The importance
of variables is ranked using the RF algorithm, and the top five series are
selected as input variables for the high-frequency series.

(2) Second Stage – External Feature Selection

Conduct MIC analysis on the selected structured and unstructured influence
factor variables and the original series, choosing influence factors with MIC
values greater than 0.5. Afterwards, calculate the Pearson correlation coeffi-
cient values for the selected influence factors, and those with values greater
than 0.5, indicating a strong correlation level, are selected as the final external
feature input variables.

3.3 Multiscale Forecasting

This paper employs three forecasting models for multi-scale ensemble pre-
diction of carbon prices: PSO-BiLSTM, ARIMA, and PSO-XGBoost. The
forecasting process is detailed as follows:

(1) The PSO-BiLSTM model is used to predict the high-frequency series
selected through feature selection; ARIMA approach is used to project
the input variables for the low-frequency series; and the PSO-XGBoost
model forecasts using both the trend series and influencing factor
variables selected through feature selection as inputs. forecasts using

(2) Finally, the PSO-BiLSTM integrates the three forecasting results above
to obtain the final carbon price forecast.

4 Case Study

4.1 Data

4.1.1 Carbon price data
As one of the first national pilot projects for carbon emission trading, the
Guangdong pilot has consistently led the country in trading volume. By the
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end of September 2022, the cumulative trading volume of carbon emission
rights approached 300 million tons, with a total transaction value exceeding
6 billion yuan, positioning it at the forefront of national carbon pilot insti-
tutions. The carbon price in this pilot has strong market representativeness.
Therefore, this paper selects the Guangdong carbon trading pilot as the case
study subject, with data sourced from the official website of the Guangdong
Carbon Emission Exchange. This study utilizes the daily closing price data
of the Guangdong carbon pilot from December 19, 2013, to September 30,
2022, employing linear interpolation to fill in missing values, resulting in a
total of 1915 data points. Furthermore, the dataset is divided into a training
set and a test set at a ratio of 4:1, allowing the model to learn the historical
patterns of the carbon price time series on the training set and to evaluate the
model’s predictive capability on the test set, thereby preventing overfitting.

Figure 2 illustrates the trend of changes in the carbon price series for the
Guangdong carbon trading pilot utilized in this study. Table 1 provides the
statistical description results of the carbon price dataset for the Guangdong
carbon trading pilot, calculated using Python 3.9.0. The statistical values
reveal that the skewness of the carbon price data is greater than 0, indicating
a right-skewed distribution with a longer tail on the right; the kurtosis is less
than 3, suggesting a platykurtic distribution; and the Jarque-Bera values are

Figure 2 The variation trend of carbon price in GuangDong ETS pilot.

Table 1 Statistical description of carbon price data in Guangdong
Mean Max Min Std Skewness Kurtosis Jarque-Bera
33.2152 95.26 11.05 20.5780 1.2673 0.4930 344.7642
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Table 2 ADF test results
Threshold

1% 5% 10% T-Statistic P-value
3.4357 −2.8639 −2.5680 1.5693 0.9978

Table 3 BDS test results
BDS Statistic Sd Z-Statistic P-value
0.2024 0.0031 66.0256 0.0000

significantly greater than 0, demonstrating that the Guangdong carbon price
series does not conform to a normal distribution.

The Augmented Dickey-Fuller (ADF) test results for the Guangdong car-
bon trading pilot dataset, shown in Table 2, indicate that the ADF test statis-
tics are above their corresponding critical values, with P-values exceeding
0.05, signifying the presence of non-stationary characteristics. The Brock-
Dechert-Scheinkman (BDS) test results for the Guangdong carbon trading
pilot dataset, obtained through EViews 9.0 and presented in Table 3, exhibit
statistical significance at an embedding dimension of 2. The Z-statistics sig-
nificantly surpass the normal distribution range, with corresponding P-values
at 0.0000, thus rejecting the random walk hypothesis. This suggests that the
Guangdong carbon price series displays significant nonlinear characteristics.

4.1.2 Data on influencing factors
(1) Structural Factors

The price of carbon emission rights is influenced by many factors. In terms
of structural impact factors, this paper mainly considers the effects of energy
prices, international carbon asset prices, environmental changes, and the
financial market.

(2) Energy Prices

Industrial production has a significant demand for energy, with the com-
bustion of fossil fuels being the primary source of energy for industrial
production. The carbon dioxide produced is the main source of carbon
emissions in industrial production. Energy prices are closely related to the
production operations of enterprises. Fluctuations in energy prices can lead
to changes in energy demand by enterprises, thereby altering their indus-
trial production scale and demand for carbon emission rights, leading to
fluctuations in carbon prices.
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(3) International Carbon Prices

In the globalized economic system, a transnational interdependence and influ-
ence network has formed in the carbon market. International carbon prices
reflect the global consensus and urgency on carbon emission restrictions.
They not only represent the value standard of global carbon reduction efforts
but are also an important indicator of international policy trends and market
demand changes. As one of the world’s largest carbon emitters, China’s
carbon market is influenced by international carbon market trends, especially
in carbon trading mechanisms, carbon pricing strategies, and carbon reduc-
tion technologies. Fluctuations in international carbon prices can indirectly
adjust the supply and demand relationship in China’s carbon market by
affecting the cost structure and investment decisions of Chinese enterprises
and international trade conditions, thereby affecting carbon prices. Further-
more, compared to more mature carbon markets like the European Union,
China’s carbon market is still in its infancy and development stage. Therefore,
international carbon prices also serve as a reference and benchmark, guiding
China’s strategy adjustments and policy making in global climate change
measures. Their changes and fluctuations will to some extent affect China’s
carbon prices.

(4) Macroeconomic Shocks

Macroeconomic development is driven by the collective action of various
industries. On one hand, the macroeconomic level determines the production
scale of each industry and the resulting carbon emissions; on the other hand,
the macroeconomic situation prompts enterprises to make corresponding
production target decisions, thereby affecting the carbon emission demands
of enterprises and ultimately influencing carbon prices.

(5) Financial Market

The continuous development of the carbon market has increasingly high-
lighted its financial attributes, and its relationship with traditional financial
markets is becoming closer, with a risk spillover effect existing between them.
Domestic traditional financial markets mainly affect carbon prices through
exchange rates and interest rates. Fluctuations in exchange rates directly
affect import and export trade, thereby affecting enterprise production; fluc-
tuations in interest rates directly affect the loan costs and emission reduction
costs of enterprises, impacting carbon emissions and causing changes in
carbon prices.
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(6) Environmental Changes

One of the dominant factors affecting carbon trading prices in the climate
environment is temperature. In extremely hot or cold environmental con-
ditions, people will increase the frequency of using cooling equipment or
increase the demand for thermal supply, leading to an increase in energy
demand and CO2 emissions, thus affecting carbon trading prices. On the
other hand, the content of greenhouse gases in the air directly determines
the pricing of carbon trading prices. In recent years, air pollution has become
increasingly severe, with the massive emission of “three wastes” leading to
worsening air quality and serious smog weather. Environmental departments
have established the Air Quality Index (AQI) to measure the air quality level.
AQI intuitively reflects the content of greenhouse gases in the air, thereby
affecting the direction of carbon trading prices.

4.1.3 Non-structural factors
Unstructured data refers to information that lacks a regular structure or is
incomplete, without predefined data models. Non-structural influencing fac-
tors may conceal significant information, and incorporating this data can lead
to a more comprehensive understanding and thus more accurate predictions.
Internet search information can reflect people’s psychological expectations
and behavioral characteristics in investment decisions in real time. Compared
to the Google Index, the Baidu Index provides a higher contribution rate of
information for predicting the behavior of domestic residents. Therefore, this
paper selects the Baidu Search Index (SI) as the source of non-structural data.
The selection of keywords is a prerequisite for obtaining non-structural data
using the Baidu Index.

Currently, methods for determining keywords for the Baidu Index include
direct selection, range selection, and technical selection. Although the tech-
nical selection method yields results with high precision, it has a high
computational complexity and requires the support of powerful computing
resources to determine keywords. To improve efficiency in keyword selection,
this paper initially adopts the direct selection method, using multiple rounds
of group discussions and expert reviews to determine the initial keywords.
Subsequently, the range selection method is used, applying Baidu’s related
word classification and demand graph functions to further select keywords.

This paper selects 13 keywords most likely to reflect residents’ carbon
trading behavior, including carbon, low carbon, carbon sink, carbon trading,
carbon emission, carbon footprint, carbon neutrality, carbon peak, carbon
tariff, low-carbon economy, energy conservation and emission reduction,
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Table 4 Classification of influencing factors and selection of variables
Type Variable
Energy Price Factors NYMEX natural gas futures closing price (NG)

West Texas Intermediate crude oil futures
settlement price (WTI)
Brent crude oil futures settlement price (BRE)
Coking coal futures closing price (CC)

Financial Factors USD/CNY exchange rate (E/R)
EUR/CNY exchange rate (U/R)

Economic Factors China Securities Index 300 closing price (CSI300)
International Carbon Emission Prices European Union Allowance futures price (EUA)
Environmental Factors Daily Air Quality Index (AQI)

Highest temperature (HD)
Lowest temperature (LD)

Non-structural Factors Baidu Search Index (SI)

greenhouse gases, and greenhouse gas emissions, and retrieves the corre-
sponding Baidu Index for these keywords. The final Baidu search index value
is the sum of the search volumes for all keywords.

In summary, this paper selects corresponding variables to represent the
various types of factors that may influence carbon prices, as detailed in
Table 4. Data for all variables in the table are selected for the same time
period to match the carbon price series, and linear interpolation is used to fill
in missing values. The data on influencing factors all come from the Wind
database and are consistent with the Guangdong carbon pilot dataset.

4.2 Evaluation Metrics

To accurately assess the predictive performance of each model, this paper
uses three metrics as evaluation criteria: the root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE).
The smaller the RMSE, MAE, and MAPE values of a model, the smaller the
error between its predicted values and actual values, demonstrating a better
predictive accuracy of the model. Let yt represent the actual carbon price
at time t, ŷt be the predicted carbon price at time t, ȳt be the average of
actual carbon prices at time t, and n be the number of prediction samples.
The calculation formulas for each metric are as follows:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2 (25)
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MAE =
1

n

n∑
t=1

|yt − ŷt| (26)

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣× 100% (27)

4.3 Parameters and Environment

In this paper, the forecast at a given time point is related to its carbon
price over the past 30 days, that is, utilizing the carbon prices from the
past 30 days of a specific time point to predict its price. To counteract the
randomness inherent in the algorithms, the average outcomes from ten runs
of each model are taken as the final prediction results. The VMD layer count
is set to 10. For the PSO, the population size is 20, with a total of 100
iterations, and particle velocity ranges between [−5, 5]. The experiments
were conducted on a computing environment equipped with an R7-5800H
CPU, 16.0 GB of RAM, and a Windows 11 64-bit operating system. The
setup included TensorFlow 2.5.0 installed, with Python as the programming
language, specifically version 3.9.0.

4.4 Forecasting Process

4.4.1 Secondary decomposition
Initially, the CEEMDAN method is employed to decompose the original car-
bon price series, yielding eight intrinsic mode functions (IMFs), as illustrated
in Figure 3. Subsequently, the SE values of all IMFs are calculated, and their
complexity is analyzed. Subsequences with similar entropy values are aggre-
gated through component reconstruction to enhance computational efficiency
and prevent information loss due to excessive decomposition. Higher SE
values indicate greater complexity of the component. As shown in Figure 4,
under two parameter combinations, the SE values of IMF1 and IMF2 are both
greater than 1, significantly higher than those of other components, while the
SE values of IMF6 to IMF8 are all less than 0.1, indicating relatively lower
complexity and a clear trend. Therefore, IMF1 and IMF2, IMF3 to IMF5,
and IMF6 to IMF8 are aggregated and reconstructed into high-frequency,
low-frequency, and trend series, respectively. The aggregation results of each
series can be seen in Figure 5.

Lastly, the high-frequency series undergoes secondary decomposition
using the Variational Mode Decomposition (VMD) algorithm, resulting in
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Figure 3 Decomposition results of CEEMDAN.

ten new intrinsic mode functions, as depicted in Figure 6. The decomposed
subsequences exhibit more regularity and predictability compared to the
original high-frequency components.

4.4.2 Feature selection
To ensure the accuracy and effectiveness of the model, feature selection
methods are employed to determine the input variables of the internal
characteristics for the subsequences V-IMFs (obtained after the secondary
decomposition of the high-frequency, low-frequency, and trend series.
The Partial Autocorrelation Function (PACF) results of the 0 to 30th order
for the low-frequency and trend series are calculated. Lags exceeding the
95% confidence interval in the PACF results are selected as input variables
for the low-frequency and trend series. As illustrated in Figures 7 and 8, lags
that surpass the red dashed line in PACF values are considered key features
for the low-frequency and trend series. Table 5 displays the specific results of
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Figure 4 Sample entropy of each IMF with different parameters.

Figure 5 The aggregation results of each component sequence.

input variable selection, indicating that the input for the low-frequency series
is x, with an input dimension of 2. This presents a difference from the trend
series, suggesting that these two series possess distinct characteristics.

Additionally, the RF algorithm is introduced to calculate the relative
importance of the ten sub-sequences of the high-frequency series. Random
Forest is an efficient machine learning technique that improves overall pre-
diction accuracy and stability by constructing multiple decision trees and
integrating their prediction outcomes. During this process, the algorithm
evaluates the contribution of each sub-sequence to the model’s predictive
performance, thereby identifying the most important sub-sequences. Based
on the calculations (see Table 6 for details), the five most important sub-
sequences were selected from these ten, to serve as input variables for the
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Figure 6 Decomposition result of VMD.

high-frequency series. These five sub-sequences, in descending order of
importance, are: V-IMF3, V-IMF10, V-IMF5, V-IMF6, and V-IMF7. This
indicates that these five sub-sequences have a decisive impact on predicting
the high-frequency part of the Guangdong carbon price series.

After completing the feature selection for internal factors, the selection of
external factors’ features is conducted. Given the differences in measurement
units among the influencing factor variables, the min-max normalization
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Figure 7 PACF results of low frequency sequences.

Figure 8 PACF results of trend sequences.

Table 5 Low frequency and trend sequence input variables
Sequence Input Variable
Low frequency sequence xt−0 xt−1 xt−2 xt−4 xt−5 xt−7 xt−8 xt−13

Trend sequence xt−0 xt−1 — — — — — —

method is first applied to standardize the dimensions of each variable. Subse-
quently, the selected structured and unstructured influencing factor variables,
along with the original carbon price series, undergo MIC analysis. In this
analysis, influencing factors with MIC values exceeding 0.5 are selected to
ensure their richness in information. Based on this, the Pearson correlation
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Table 6 RF value of high frequency sequence

Sequence RF Value of High Frequency Sequence

V-IMF1 0.0799

V-IMF2 0.0817

V-IMF3 0.1980

V-IMF4 0.0585

V-IMF5 0.1155

V-IMF6 0.0967

V-IMF7 0.0966

V-IMF8 0.0716

V-IMF9 0.0779

V-IMF10 0.1236

Table 7 MIC and Pearson phase relationship values of each influencing factor variable

Influencing Factor Variable MIC Pearson

SI 0.7817 0.6376

EUA 0.8751 0.9481

WTI 0.7224 0.7112

BRE 0.7159 0.6755

HS300 0.6418 0.3728

U/R 0.6327 −0.1944

E/R 0.6327 −0.8361

NG 0.7108 0.7916

CC 0.7911 0.7911

AQI 0.1476 —

HD 0.4866 —

LD 0.4849 —

coefficients of the selected influencing factor variables are calculated to
identify factors with strong correlation (correlation coefficient greater than
0.5) with the target variable, thereby determining the final external feature
input variables. According to the results shown in Table 7, the MIC values
and Pearson correlation coefficients for the European Union carbon trading
price (EUA) are the highest, underscoring the significant correlation between
international carbon prices and carbon price forecasting. In contrast, the
Daily Air Quality Index (AQI) presents the lowest MIC values. Additionally,
the MIC values for other environment-related influencing factor variables
are also below 0.5, indicating that environmental factors have a relatively
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limited impact on carbon price prediction. The final external feature input
variables identified include the EUA, SI, WTI, BRE, NG, and CC. These six
influencing factor variables play a decisive role in predicting carbon prices.

4.4.3 Multiscale forecasting
Initially, the high-frequency, low-frequency, and trend series, after fea-
ture selection, are forecasted using three predictive models: PSO-BiLSTM,
ARIMA, and PSO-XGBoost. During this process, special attention is given
to using the trend series and influencing factor variables as joint inputs for
the forecast, to fully leverage their correlation. The MIC analysis revealed
that the trend series shows a stronger correlation with the influencing factor
variables compared to the high-frequency and low-frequency series, possibly
because the trend series better reflects long-term market trends and the
impact of macroeconomic factors. Hence, the influencing factor variables
and the trend series are jointly used as inputs for forecasting, aiming to more
accurately capture and learn the key information in the trend series.

Subsequently, the PSO-BiLSTM model integrates the three scales of
forecast results obtained in the above process, achieving the final prediction
of carbon prices. This integration method combines the unique perspectives
and strengths of each series and model, fully capturing the characteristics of
carbon price fluctuations and reducing the bias or uncertainty that any single
model may introduce. This results in a comprehensive and integrated carbon
price forecasting model that provides more robust and accurate predictions.
For example, the PSO-BiLSTM model excels in handling non-linear and
complex data relationships, the ARIMA model is suitable for linear and stable
data sequences, and the XGBoost model excels in effectively integrating and
analyzing a large number of influencing factors, capturing subtle changes and
deep data relationships that traditional models may overlook. By combining
the unique advantages of these models, the multiscale integrated combination
forecasting method established in this study not only reflects the immediate
dynamics of the market but also considers long-term trends and external
influencing factors, offering a comprehensive and in-depth perspective for
carbon price forecasting.

Figure 9 shows the final fitted forecast results, clearly demonstrating the
excellent performance of the composite forecasting model constructed in this
study in predicting carbon prices in the Guangdong carbon market. The figure
reveals a high alignment between the model’s predicted values and the actual
carbon prices, highlighting the model’s effectiveness in handling complex
data and forecasting market dynamics.
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Figure 9 Fitting prediction results of Guangdong carbon pilot.

4.5 Model Evaluation and Comparative Analysis

To validate the effectiveness of the proposed composite forecasting model,
nine models were established for comparative analysis. Since some compar-
ison models include many sub-models, all models are named M1–M12 for
simplicity. Except for models M5 and M6, all models incorporate unstruc-
tured data, predicting with multi-source data inputs such as historical prices,
structured influencing factors, and Baidu Index.

The models are detailed as follows: M1: single model XGBoost; M2:
single model BiLSTM; M3: XGBoost model optimized with PSO algo-
rithm; M4: BiLSTM model optimized through PSO algorithm; M5: predic-
tions using only historical carbon price data with a multiscale forecasting
approach; M6: predictions using a multiscale forecasting approach without
unstructured data; M7: based on secondary decomposition and feature selec-
tion methods, using multi-source data as input, predicting high-frequency and
low-frequency series with PSO-BiLSTM and the trend series and influencing
factor data with PSO-XGBoost, and finally integrating all forecast results
with PSO-BiLSTM to get the final carbon price forecast; M8: based on
secondary decomposition and feature selection methods, using multi-source
data as input, predicting all component series and influencing factor data
with PSO-BiLSTM model, and integrating all forecast results with PSO-
BiLSTM to get the final carbon price forecast; M9: based on the secondary
decomposition method, without feature selection for the series, predicting
with a multiscale forecasting method; M10: the composite forecasting model
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Table 8 Error evaluation values for each model
Methods RMSE MAE MAPE(%)
M1 2.6159 1.9068 2.7835
M2 2.5307 1.9016 2.5711
M3 2.3749 1.7539 2.3077
M4 2.1531 1.7194 2.2906
M5 1.0261 0.9580 1.0379
M6 0.7011 0.5761 0.9139
M7 0.6749 0.5029 0.7297
M8 0.8515 0.7990 0.8275
M9 0.7490 0.6815 0.9133
M10 0.4009 0.2699 0.5183

proposed in this study The evaluation of the forecasting results of each model
is shown in Table 8. Key findings include:

(1) As shown in Figure 9, the forecast results of the proposed composite
forecasting model M10 align closely with the actual trends of carbon
prices, and its evaluation metrics outperform those of the compar-
ison models, demonstrating excellent forecasting ability. Its RMSE,
MAE, and MAPE values are respectively 0.9915, 0.4009, 0.2699, and
0.5183%, indicating good applicability in the Guangdong carbon pilot.
Compared to single models M1 and M2, the composite forecasting
model significantly improved prediction performance, with optimiza-
tions in RMSE, MAE, and MAPE by 84.7%, 85.8%, and 81.4%
respectively compared to M1; and 84.2%, 85.8%, and 79.8% compared
to M2, proving the effectiveness of the proposed composite strategy in
enhancing carbon price prediction accuracy.

(2) By comparing models M1 with M3, and M2 with M4, it is found that the
predictive accuracy of both the BiLSTM model (M4) and the XGBoost
model (M3) improved with PSO optimization. Specifically, XGBoost
(M1) model’s RMSE, MAE, and MAPE decreased by 9.2%, 8.0%, and
17.1% respectively; BiLSTM (M2) saw reductions in RMSE, MAE, and
MAPE by 14.9%, 9.6%, and 10.9%. This demonstrates that optimizing
the model parameters can fully leverage their predictive capabilities and
enhance the precision of carbon price forecasts.

(3) The comparative analysis of models M5, M6, and the proposed com-
posite forecasting model M10 aims to explore the impact of different
types of input data on the accuracy of carbon price predictions. The
evaluation metrics show that model M6, which includes influencing
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factor data, significantly outperforms the model M5 that relies solely
on historical data. Specifically, the optimization rates of RMSE, MAE,
and MAPE for model M6 are 31.7%, 39.9%, and 11.9% respectively.
This finding confirms that, compared to relying solely on historical
data, incorporating key influencing factors of carbon prices provides
richer and more effective feature information for predictions, helping
the model to capture anomalies or trend deviations not fully reflected
in historical data, thereby improving prediction accuracy. Furthermore,
compared to model M6, which does not incorporate unstructured data,
the proposed forecasting model M10 demonstrated higher prediction
accuracy. The errors in RMSE, MAE, and MAPE for model M10
decreased by 42.8%, 53.2%, and 43.3% respectively, highlighting the
important role of unstructured data in enhancing the precision of carbon
price predictions. This is because the inclusion of unstructured data cap-
tures public attention, enriches the feature set of the prediction model,
and provides a more comprehensive perspective for accurate carbon
price forecasting.

(4) The multiscale forecasting strategy proposed in this study incorporates
three prediction models, specifically utilizing PSO-BiLSTM, PSO-
XGBoost, and ARIMA to forecast different series based on the char-
acteristics of their frequency components. Model M7 uses only the
PSO-BiLSTM model for all series predictions, while model M8 does
not employ ARIMA for low-frequency series forecasting. Compared to
the multiscale forecasting model M10, these two models show lower
prediction accuracy. Relative to model M7, M10’s RMSE, MAE, and
MAPE decreased by 40.6%, 46.3%, and 29.0% respectively; compared
to model M8, they decreased by 52.9%, 66.2%, and 37.4%. This demon-
strates the effectiveness of the proposed multiscale forecasting strategy
in carbon price prediction.

(5) Compared to model M9, which does not feature select for the series,
M10 exhibited superior prediction performance, with optimizations in
RMSE, MAE, and MAPE of 46.5%, 60.4%, and 43.2% respectively.
These results highlight the significant role of the feature selection strat-
egy proposed in this study in enhancing the accuracy of carbon price
predictions. The process of feature selection identifies and selects key
features with significant impact on the prediction target from a large set
of potential explanatory variables, reducing interference from irrelevant
features and optimizing the model’s information processing capabil-
ity. This process not only reduces model complexity and the risk of
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overfitting but also enhances the model’s ability to capture the intrinsic
patterns of the data, thereby improving the precision and reliability of
the forecast results.

5 Conclusion and Future Work

Carbon trading is recognized as the most cost-effective method for reduc-
ing emissions. Accurate prediction of carbon trading prices can serve as a
theoretical reference for the establishment and development of the carbon
market. To enhance the accuracy of carbon price forecasting, this study
deeply analyzes historical carbon prices and incorporates unstructured data
and other external factors affecting carbon prices. This approach captures and
understands the complex dynamics affecting carbon price fluctuations more
precisely and comprehensively. Additionally, the study employs secondary
decomposition and feature selection strategies to minimize data noise and
redundant features, optimizing model inputs. Furthermore, a multiscale fore-
casting strategy is proposed, modeling different frequency components based
on decomposition results, enabling the prediction model to capture carbon
price patterns across multiple scales and thus improve the model’s feature
extraction capability and forecasting accuracy.

In the process of feature selection and analysis, it was found that inter-
national carbon prices are highly correlated with the fluctuations in China’s
carbon market, while the correlation with environmental factors is lower,
despite their perceived impact on carbon prices. Moreover, energy prices also
significantly affect carbon price fluctuations. These findings provide valuable
insights into understanding carbon price volatility.

This paper establishes nine benchmark models and uses three error
evaluation metrics for a comprehensive comparative analysis of model
effectiveness. The results show that the feature selection method enhances
the model’s ability to capture effective features; parameter optimization
helps achieve optimal predictive performance; introducing unstructured and
influencing factor data provides a more comprehensive set of information,
positively affecting predictive accuracy. Multiscale modeling based on the
characteristics of different series further improves predictive performance.
The multisource data combination forecasting model, based on feature
selection and secondary decomposition, exhibits high predictive accuracy,
indicating its suitability as an effective tool for carbon price prediction tasks.
In summary, the composite forecasting model proposed in this study provides
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an effective tool for carbon price forecasting and analysis, offering new
directions for developing more efficient and precise forecasting models.

Future research should consider further integrating unstructured data,
such as news text, to enrich the model’s insights into key factors like market
sentiment, policy changes, and economic events. This integration would
provide more comprehensive and timely information on carbon price fluc-
tuations, thereby enhancing the model’s predictive capability and improving
the accuracy and reliability of the forecasts.
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