
A New Grey Prediction Model and
Its Application in Renewable

Energy Consumption

Bi Ge∗ and Zhenyan Shang

Chongqing College of International Business and Economics, Chongqing, 401520,
China
E-mail: meilixiaoyu2024@163.com
∗Corresponding Author

Received 26 June 2024; Accepted 08 August 2024

Abstract

Renewable energy is an energy resource that can be used continuously. At
present, international oil prices continue to rise, the problem of global climate
change is becoming increasingly prominent, and renewable energy and clean
energy have ushered in a new round of development opportunities. Based
on the new gray prediction model, this paper forecasts the consumption
of renewable energy and further analyzes the sustainable development of
renewable energy. In this paper, the combinatorial optimization method of
cumulative order, background value coefficient, and initial conditions, param-
eter optimization combination, parameter combinatorial optimization process
of the gray prediction model, and parameter optimization mechanism based
on the PSO algorithm are proposed, and the reduction error analysis is carried
out. The consumption of wind power and photovoltaic renewable energy is
forecasted, and three different forecasting methods as exponential smoothing
method, time series analysis method, and new gray forecasting method are
compared, and the wind speed, irradiation intensity, and load are forecasted
by these three different forecasting methods. Compared with the time series
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analysis method and the exponential smoothing method, the RMSE of the
new grey prediction method is reduced by 127.12% and 160.59%, and the
error rate is reduced by 3.16% and 4%, respectively. Based on the consump-
tion forecast of renewable energy, this paper analyzes its sustainability from
three directions economy, resource supply, and environment, and finally gives
energy policy recommendations.

Keywords: Renewable energy, solar power, new grey prediction model,
sustainability analysis, energy policy.

1 Introduction

Energy is the key material foundation to promote the development and
progress of modern human society. On a global scale, it is not only an
important strategic resource in the fields of economy, politics, culture, and
military but also the core pillar of national development. Looking back
at human history, it is found that every major civilization’s progress and
technological breakthrough is often accompanied by the promotion of energy
utilization methods and energy technology innovation [1]. As the world’s
largest developing country, China has experienced rapid social and economic
growth and made remarkable achievements in economic development during
the past decades of reform and opening up. With industrialization and popula-
tion growth, global energy consumption continues to rise, while the reserves
of traditional fossil fuels are limited, and burning fossil fuels will release
a large number of greenhouse gases, exacerbating global climate change.
The development of renewable energy is therefore a key strategy to reduce
dependence on fossil fuels, mitigate climate change, improve energy security
and promote sustainable development. With China’s rapid rise, the demand
for and consumption of renewable energy continues to grow rapidly.

In power system planning and operation, forecasting the consumption
of renewable energy is crucial. In short, the forecasting of the power sys-
tem aims to estimate in advance the energy demand at some stage in the
future [2]. To make this prediction accurately, it must first reveal the internal
change law of power consumption data. This is usually done by analyzing
historical power data and exploring the relationship between these data and
influencing factors, which is the basis for understanding the inherent laws of
power data. Many domestic and foreign scholars have conducted extensive
research in the field of power forecasting [3]. Some common forecasting
methods in use today include the moving average method, trend analysis,
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time series forecasting, exponential smoothing method, neural network, and
grey model forecasting. Since its inception in 1970, the ARIMA (Autore-
gressive Integrated Moving Average) model has served as a foundational
tool for time series forecasting, gaining prominence as a go-to model for
such analyses [4]. The advancement of computational capabilities and the
emergence of machine learning have led to innovative approaches to energy
consumption prediction. For instance, the seasonal exponential smoothing
method advanced by Taylor [5] and colleagues demonstrates enhancements
in forecasting precision. In parallel, the integration of neural networks into
energy consumption forecasting models has been instrumental in capturing
the intricate nonlinear dynamics at play between energy usage and various
influencing variables. This integration has elevated the predictive process to
a more rigorous and accurate standard. On the other hand, the grey system
theory, pioneered by the Chinese scholar Prof. Deng Julong [6] in 1982, has
made significant strides in handling uncertain and incomplete information
within system modeling. However, when compared to the capabilities offered
by neural networks, particularly in terms of functional scope, information
processing, and prediction accuracy, grey system theory might present certain
limitations. Grey system theory is mainly concerned with the modeling
of fuzzy systems, but its ability to deal with system relationship analysis,
modeling, prediction, and decision is relatively limited.

Each of the above methods and models has unique advantages and limita-
tions, which affect the accuracy of prediction. Therefore, how to combine the
advantages of each to make up for the shortcomings, how to select the most
appropriate forecasting method according to the specific research needs, and
even develop a new forecasting method, have become the key direction of the
research community to pursue accurate forecasting. To solve the above prob-
lems, this paper combines particle swarm optimization algorithm with data
prediction, proposes a new gray prediction model to predict the use of renew-
able energy, and deeply discusses the sustainable development of renewable
energy. This paper introduces how to improve the construction process of the
grey prediction model by combining the cumulative order, background value
coefficient and initial conditions, and parameter optimization combination.
In addition, the parameter optimization mechanism based on particle swarm
optimization (PSO) is introduced and verified by the reduction error analysis.
The study also forecasts renewable energy consumption from wind and solar,
and compares exponential smoothing, time series analysis, and new gray
forecasting methods, using all three simultaneously to predict wind speed,
solar radiation intensity, and power load.
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2 Parameter Optimization of Grey Prediction Model Based
on Particle Swarm Optimization (PSO)

2.1 Parameter Combination Optimization

The gray prediction mannequin relies upon key parameters, which include
the order of accumulation, the historical past cost coefficient, and the initial-
ization conditions. The core content material of this chapter talks about how
to reap the high-quality mixture of these parameters to optimize the overall
performance of the gray prediction mannequin [7]. The cumulative era is a
statistics processing technological know-how that displays the evolution of
regulation and improvement style of unsure information. The randomness of
the authentic information can be decreased via the era system of sequence
accumulation, to expose the hidden vital traits and legal guidelines in the
records extra truly [8]. The so-called accumulation order refers to the variety
of instances the grey accumulation is generated, and the first-order accumu-
lation era sequence is additionally recognized as the one-time accumulation
technology sequence. Under regular circumstances, the accumulation order
in the grey prediction mannequin is set to an integer.

Single-summation generates sequence:

X(1) = (x(1)(1), x(1)(2), . . . , x(1)(n))

x(1)(k) =

k∑
i=1

x(0)(i), k = 1, 2, . . . , n (1)

Where X(1) is a cumulative birth sequence of X(0).
Single-decrement generation sequence:

X(r) = (x(r)(1), x(r)(2), . . . , x(r)(n))

x(r)(k) =
k∑

i=1

Γ(r + k − i)

Γ(r + k − i)Γ(r)
x(0)(i), k = 1, 2, . . . , n (2)

X(r−1) = (x(r−1)(1), x(r−1)(2), . . . , x(r−1)(n))

x(r−1)(k + 1) = x(r)(k + 1)− x(r)(k), k = 1, 2, . . . , n (3)

Multiple accumulation generator:

(X(q))(h) = (X(h))(q) = X(h+q) (4)

X(0) = (X(r))(−r) = (X(−r))(r) (5)
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The technology of adjoining imply is a smoothing method that goals
to decrease the impact of severe records factors on the motion of the grey
mannequin using calculating the suggestion of adjoining facts points. When
setting up the sequence of adjoining suggest values Z(1), every adjoining fee
is assigned a positive weight, which is known as the history fee coefficient [9].
When constructing a mannequin in a realistic application, the historical past
fee coefficient is commonly set to 0.5. In the regular gray prediction model,
the sequence of adjoining potential is composed of the suggested values of
adjoining values in the cumulative sequence.

Z(1) = (z(1)(1), z(1)(2), . . . , z(1)(n))

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1), k = 2, 3, . . . , n (6)

Where Z(1) is the adjacent mean generating sequence of X(1).
For the gray prediction mannequin with optimized accumulation order,

the adjoining implied producing sequence is the suggestion of adjoining
factors of the r order cumulative producing sequence X(r).

Z(r) = (z(r)(1), z(r)(2), . . . , z(r)(n))

z(r)(k) = 0.5x(r)(k) + 0.5x(r)(k − 1), k = 2, 3, . . . , n (7)

Where Z(r) is the adjacent mean generating sequence of X(r).
The determination of historical past fees is very essential for the accuracy

of the gray prediction mannequin and the estimation of the improvement
coefficient. To decorate the accuracy of the prediction mannequin and amplify
its applicability in unique fields, it can seriously change the regular historical
past values into weighted sums primarily based on first-order cumulative
generated sequences [10]. In this process, it uses the golden part ratio to
decide the highest quality weight, to extra efficiently replicate the dynamic
modifications of the sequence and enhance the reliability of the prediction
results.

Z
(1)
ξ = (z

(1)
ξ (2), z

(1)
ξ (3), . . . , z

(1)
ξ (n))

z
(1)
ξ (k) = ξx(1)(k) + (1− ξ)x(1)(k − 1), k = 2, 3, . . . , n (8)

For a grey prediction model with optimized accumulation order, the
smoothing sequence of its independent variables is the weighted sum of adja-
cent elements of the sequence X(r) generated by the r-order accumulation, as
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shown in Equation (9).

Z
(r)
ξ = (z

(r)
ξ (2), z

(r)
ξ (3), . . . , z

(r)
ξ (n))

z
(r)
ξ (k) = ξx(r)(k) + (1− ξ)x(r)(k − 1), k = 2, 3, . . . , n (9)

The preliminary condition, additionally acknowledged as the preliminary
cost or iterative base value, is the beginning factor of deducing the time
response feature of the gray prediction mannequin and a direct component
affecting the prediction accuracy of the model. The standard gray prediction
mannequin normally selects the first facts x(0)(1) in the authentic sequence
as the preliminary value.

x̂(0)(k) =

k−1∑
i=0

(−1)i
Γ(r + 1)

Γ(i+ 1)Γ(r − i+ 1)
x̂(r)(k − i), k = 2, 3, . . . , n

(10)

In the traditional grey prediction model, the cumulative order, the back-
ground value coefficient, and the initial condition are set to fixed values,
which are r = 1, ξ = 0.5, Csz = x(0)(1) respectively. The mixed
optimization approach of cumulative order, historical past price coefficient,
and preliminary stipulations is relevant to the gray prediction mannequin
containing these three parameters [11]. The development technique of
the gray prediction mannequin of parameter blended optimization consists
of 5 steps, particularly information series, and analysis, gray prediction
mannequin selection, mannequin development, and parameter optimization,
mannequin simulation and overall performance testing, and gadget fashion
prediction [12].

Traditional background values are converted to weighted sums based on
first-order Accumulated Generating Operation (AGO) sequences, which have
the following advantages in grey forecasting models: By accumulating the
original data, AGO can smooth the random fluctuations in the data series and
make the trend of the data series more obvious, thus improving the stability
and prediction accuracy of the prediction model. The AGO operation can
smooth the data series, reduce the influence of noise and outliers, and make
the data series more stable, which is conducive to the construction of the
model and the stability of the prediction results. Traditional background value
calculation methods may not be able to fully reflect the inherent law and trend
of data series, but the weighted and background value calculation based on
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Figure 1 Grey prediction flow chart of parameter combination optimization.

AGO series can better reflect the long-term trend and dynamic changes of
data series, so that the model is more consistent with the actual data.

To disclose the optimization mechanism of the parameter, aggregate of
the gray prediction model, an instance of gray prediction mannequin with
three-parameter aggregate optimization is adopted here. By the usage of the
particle swarm optimization algorithm (PSO), this paper designed a drift
chart to visually exhibit the parameter optimization process, as proven in
Figure 1. The procedure of setting up the gray prediction mannequin of
parameter mixture optimization is frequently divided into two parts. The first
phase is a feature program, which builds the mannequin based totally on the
parameter estimation method, time response formula, discount formulation,
and overall performance taking a look at the index of the gray prediction
model. This application covers all pending parameters, such as the order
of accumulation, history cost coefficients, and preliminary conditions. The
second part is the intelligent optimization algorithm program, specifically,
the particle swarm optimization algorithm. This algorithm program calls the
aforementioned grey prediction model function and optimizes one by one
according to the order of accumulation order, background value coefficient,
and initial conditions according to the optimization construction process [13].
During this process, the mean absolute percentage error (MAPE) is calculated
and this result is fed back to the PSO program. Finally, the PSO program
outputs the optimal accumulation order, background value coefficient, and
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initial condition values determined under the MAPE minimization condition.
In short, the purpose of this process is to find the parameter values that
optimize the performance of the model.

2.2 Model Property Analysis

The perturbation sure of the mannequin answer x is:

L[x(0)(1)] = |ε|
κ↑
γ↑

(√
n− 1

∥ B ∥
∥ x ∥ +

κ↑
γ↑

√
n− 1

∥ B ∥
∥ rx ∥
∥ B ∥

)
(11)

L[x(0)(k)] =

∣∣∣∣ ε

ζk−1

∣∣∣∣ κ↑γ↑

√

n− k + 1
4

∥ B ∥
∥ x ∥ +

1

∥ B ∥

+
κ↑
γ↑

√
n− k + 1

4

∥ B ∥
∥ rx ∥
∥ B ∥

 , k = 2, 3, . . . , n (12)

It can be proved that the perturbation certain of the mannequin answer is:

L[x(0)(2)] =

∣∣∣∣εζ
∣∣∣∣ κ↑γ↑


√

n− 7
4

∥ B ∥
∥ x ∥ +

1

∥ B ∥
+

κ↑
γ↑

√
n− 7

4

∥ B ∥
∥ rx ∥
∥ B ∥


(13)

Similarly, if the initial data x is disturbed, then the disturbance bound of
the model solution x is:

L[x(0)(k)] =

∣∣∣∣ ε

ζk−1

∣∣∣∣ κ↑γ↑

√

n− k + 1
4

∥ B ∥
∥ x ∥ +

1

∥ B ∥

+
κ↑
γ↑

√
n− k + 1

4

∥ B ∥
∥ rx ∥
∥ B ∥

 , k = 2, 3, . . . , n (14)

The matrix perturbation of certain concepts offers proof for the steadiness
of the mannequin when the statistics factor is disturbed. According to this
theory, as the pattern measurement of the records increases, the perturbation
restriction expands accordingly, which explains why gray fashions are mainly
appropriate for managing prediction issues with “small quantities of data”.
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In order to keep the data sample size constant and avoid large disturbance
bounds in the model, methods such as uniform sampling, stratified sampling
or Claudemont sampling are used to ensure the representativeness of the
samples and avoid introducing too much noise due to random sampling. In
the data preprocessing stage, the data set can be balanced by resampling tech-
niques (such as oversampling a few categories or undersampling a majority
of categories) to reduce the impact of class imbalance. Rolling prediction
techniques can also be implemented [14]. This approach involves gradually
replacing old data points while adding new ones, effectively reducing the
potential for large perturbations.

The reduction error of the predicted value is:

|x̂(0)(k)− x(0)(k)| < 2ζk−1ε (15)

When ζ = 1, the reduction error of the damped accumulation is the same
as that of the traditional first-order accumulation model, both are 2ε. When
ζ < 1, the reduction error of damped accumulation is smaller than that of
traditional first-order cumulative reduction error.

2.3 Comparison of Grey Generating Operators

To examine the variations between the 4 new gray-producing operators,
Figure 2 suggests the prediction outcomes of GM(1,1) blended with 4 unique
gray-producing operators. The 4 grey producing operators in Table 1 are
used to change the standard first-order cumulative statistics era operation,
and different modeling calculation steps continue to be unchanged. When the
cumulative parameter is 1, the effects of the 4 cumulative gray fashions are
equal to the standard first-order cumulative gray prediction model.

As can be viewed from Figure 2(b), when the cumulative parameter is
much less than 1, NIPAGO’s estimated cost sequence is a lot larger than the
exponential boom fee of the standard first-order cumulative GM(1, 1). It is
extraordinarily unreasonable to think about only the precedence of facts and
pass the exchange in the boom price of the estimated value. In contrast, based
totally on fractional order accumulation and differential discount calculation,
FAGO and CFAGO can function in nonlinear processing on the preliminary
sequence and have an excessive overall performance in information fitting,
however, the predictive impact of the mannequin is now not guaranteed.
Figures 2(c) and (d) show that the prediction outcomes of the two fraction-
order fashions tend to amplify first and then decline, which is inconsistent
with the monotonic boom fashion of the regular grey model. Different from
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Table 1 Comparison and analysis of four kinds of grey-generating operators
Grey Generating Cumulative Sequence
Operator Formula Monotonicity

Damped
accumulation

x(ζ)(k) =

k∑
i=1

x(0)(i)

ζi−1
Monotone sequence

New information
accumulates first

x(λ)(k) =

k∑
i=1

λk−ix(0)(i) Nonmonotonic
sequence

Fractional order
accumulation

x(r)(k) =

k∑
i=1

(
k − i+ r − 1

k − i

)
x(0)(i) Nonmonotonic

sequence

Conformable
accumulation

x(α)(k) =

k∑
i=1

x(0)(i)

i1−α
Monotone sequence

Figure 2 Prediction results of four different cumulative grey models.

the above three gray-producing operators, the DAGO proposed in this chapter
can successfully trade the exponential boom price of the forecast statistics by
using adjusting the damping parameters, whilst the forecast result sequence
nevertheless keeps monotonicity. As shown in Figure 2(a), with the decrease
of damping parameters, the exponential growth trend of the prediction results
decreases continuously, and even the concavity changes.

3 Forecast of Renewable Energy Consumption

3.1 Data Collection

By querying the statistical database of the U.S Energy Information Admin-
istration website, this paper obtains the monthly demand data for renewable
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Figure 3 Renewable energy demand.

energy in the United States from 2005 to 2019, which is used as the raw data
for modeling for empirical analysis. The dataset contains 180 observations
with no missing data. As shown in Figure 3, the data has obvious seasonal
fluctuation characteristics, with a period of 12, and the highest point is
reached in May and June every year, and the lowest point is in September. At
the same time, the overall data also showed a significant upward trend. The
amplitude of the cycle fluctuation increases over time, that is, the amplitude
of the cycle changes in step with the trend.

To verify the fit and prediction performance of the model, the dataset
was divided into two parts. The data of 2005M1-2016M12 is used as the
training set, with 144 observations in total, which is the input data of the
type. The data from 2017M1-2019M12 is considered a test set, with a total
of 36 observations. It can be seen that the standard deviation of the data is
larger, indicating that its fluctuation is larger. The implied price of the demand
information is large, and the suggested price of the check set is drastically
larger than that of the education set, which suggests that the demand for
renewable electricity has an upward trend. The fundamental reasons for the
rise in the demand for renewable energy are the need for environmental
protection, energy security considerations, technological advances and cost
reductions, policy support and increased public awareness of environmental
protection.

3.2 Consumption Prediction Based on the New Grey Prediction
Model

Figure 4 indicates the becoming impact of every model, whereby GM(1,1)
mannequin can solely depict a clean curve due to its inherent structural
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Figure 4 Distribution of predicted and actual values.

limitations, whilst different fashions can higher disclose the boom fash-
ion and seasonal fluctuation traits in the data. The comparative evaluation
indicates that the new gray prediction mannequin suggests a fine overall
performance amongst the three fashions in each of the becoming stage and
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Figure 5 Comparison between the predicted and actual values of wind speed and irradiation
intensity.

Figure 6 Projections for residential, commercial, and industrial areas.

the prediction stage. The annual forecasting overall performance index in the
discern additionally confirms that the prediction accuracy of the new grey
forecasting mannequin is tremendously stable, and the prediction fantastic
is much less affected even when the forecasting duration is prolonged [15].
In contrast, the MAPE measures of the different two fashions accelerated
appreciably with the increase of the forecast period.

In this paper, three one-of-a-kind forecasting techniques are used to
predict the wind speed, radiation intensity, residential place load, industrial
vicinity load, and industrial place load in the future period, and the anticipated
effects are in contrast with the proper values, as proven in Figures 5 and 6
respectively.

From Figures 5 and 6, it can be viewed that the anticipated cost of
the grey prediction technique primarily based on the particle swarm opti-
mization algorithm is roughly identical to the genuine fee when predicting
wind speed, irradiation depth, and load. The prediction accuracy of the
method proposed in this paper is basically controlled above 95%, which has
high reliability. However, when time series analysis method and exponential
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smoothing method are selected for prediction, the predicted value of these
two methods has a great deviation from the real value, and can only predict
the basic trend, and there are great deviations at specific points and inflection
points [16]. To confirm the prediction accuracy of the three methods, the root
implied rectangular error (RMSE) was once used in this paper to estimate the
prediction accuracy, as proven below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (16)

To measure the accuracy of the prediction method, the root mean square
error (RMSE) of the forecast data is calculated by Equation (16). A lower
RMSE value means a more accurate prediction method. However, RMSE
is only suitable for comparison between forecast data with the same unit.
In the field of microgrids, the units of predictive variables such as wind
speed, irradiation intensity, and load are different, which makes it impossible
to directly use RMSE to evaluate the power generation and load prediction
accuracy of microgrids [17]. Therefore, this study uses the error rate as an
evaluation index to accurately measure the accuracy of predicting power
generation and load of microgrids through a specific calculation formula. The
error rate is calculated as follows:

ER =
RMSE

ymax − ymin
× 100% (17)

According to the actual and predicted values of wind speed, irradiation
intensity, and three kinds of loads, the RMSE and error rate of the three loads
were calculated using Equations (16) and (17) respectively. The calculation
results are shown in Table 2:

According to the evaluation in Table 2, the overall performance of the new
grey prediction technique in wind velocity prediction is considerably higher
than that of the normal time collection evaluation and exponential smoothing
method. Compared with the two methods, the RMSE of the new technique
is decreased by way of 127.12% and 160.59% respectively, and the error
price is additionally decreased by using 3.16% and 4% respectively. In the
radiation intensity prediction, the RMSE reduction of the new method is
105.1% and 250.6%, respectively, and the error rate is reduced by 8.03% and
19.13%. In terms of residential load forecasting, RMSE decreased by 434%
and 605.94%, and the corresponding error rate decreased by 14.72% and
20.55% respectively. The load forecast results for commercial and industrial
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Table 2 Prediction error rates of different forecasting methods
New Grey Time Series Exponential

Type Index Prediction Analysis Method Smoothing Method
Wind speed RESE 0.236 0.537 0.614

Error rate 2.43 5.65 6.57
Irradiation rate RESE 77.16 158.4 270.58

Error rate 7.62 15.64 26.75
Residential area load RESE 23.73 126.74 167.54

Error rate 3.38 18.12 23.93
Commercial area load RESE 23.98 147.6 167.12

Error rate 3.61 22.64 25.68
Industrial area load RESE 103.54 741.12 806.4

Error rate 3.1 24.32 26.47

areas showed similar high performance, with RMSE decreasing by 521.04%
and 605.58%, 606.22%, and 674.29%, and error rates decreasing by 18.98%,
22.05%, and 20.61%, 22.96%, respectively. These results clearly show that
the new grey prediction method has obvious advantages in prediction accu-
racy and efficiency. Therefore, this study decided to adopt a grey prediction
model combined with particle swarm optimization to further improve the
prediction accuracy of renewable energy generation and consumption in
microgrids.

4 Sustainability Analysis of Renewable Energy Sources

4.1 Economic Analysis

Theoretical analysis shows that when renewable energy is promoted to a
certain extent, economic development will change from an unsustainable
state to a sustainable state. Considering that the amount of real savings
is a common index for evaluating economic sustainability internationally,
this section studies the change in economic sustainability and the steady-
state change process of economic development under renewable energy by
observing the impact of renewable energy on the change of real savings [18].

During the operation, the new grey prediction model is used to calculate
an equilibrium value of the total energy consumption. This equilibrium value
represents a stable state of energy consumption in China. Next, based on the
equilibrium value and the annual growth rate of China’s actual total energy
consumption, a series of values are derived, which simulate and predict the
changing trend of total energy consumption in the future [19]. Then, these
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predicted energy consumption values are re-input into the new grey prediction
model while keeping other model parameters unchanged so that the equilib-
rium real savings corresponding to different total energy consumption levels
can be calculated. The equilibrium real savings amount refers to the maxi-
mum economic or environmental benefit that can be achieved at a specific
energy consumption level [20]. In this way, the equilibrium real savings and
total energy consumption under different scenarios (“breakout “and” non-
breakout”) can be calculated. “Breakthrough” refers to a major advance in
renewable energy technology or policy, while “non-breakthrough” refers to
maintaining the status quo. There is a one-to-one correspondence between
the two indicators, reflecting the relationship between energy consumption
and the amount of savings. The final result is shown in Figure 7, which shows
that the trajectory line of the equilibrium true savings diverges after a certain
point (the bifurcation point). To the left of the bifurcation line, renewable
energy gradually approaches the bifurcation point of renewable energy, and
the two trajectories coincide, indicating that there is no significant difference
in the amount of savings in either the “breakout” or “non-breakout” scenarios
before the bifurcation point is reached. To the right of the bifurcation line,
once renewable energy breaks through the bifurcation point, the trajectory
line is divided into two, one is the amount of savings in the “breakthrough”
case represented by the real curve, and the other is the amount of savings in
the “non-breakthrough” case represented by the virtual curve. This shows that
after the breakthrough point, there is a clear distinction between the amount
of savings in the two scenarios, reflecting the positive impact of renewable
energy technology or policy breakthroughs.

4.2 Resource and Environmental Analysis

Insufficient financing for investment in the energy sector. China will need
significant investment to build a reliable and adequate energy supply system,
which is especially necessary to provide modern energy for a large part
of the Chinese population whose energy needs are currently unmet. First,
investment in energy production still needs to be expanded, and private invest-
ment is insufficient. Second, investment in energy infrastructure is essential,
including transmission, distribution and storage, and import facilities.

According to the Intergovernmental Panel on Climate Change (IPCC),
cumulative carbon dioxide emissions from human things have a great influ-
ence on the warming of the Earth’s floor [21]. About 40% of these emissions
are absorbed by terrestrial ecosystems and oceans. The rest accumulated in
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Figure 7 Impact of energy on economy.

the atmosphere, leading to greenhouse gas concentrations not seen in at least
800,000 years. Climate change is altering the way natural systems operate,
and many extreme weather and climate events have been observed since
the 1950s, such as heat waves, droughts, floods, hurricanes, and wildfires.
These activities exhibit that cutting-edge ecosystems are surprisingly touchy
to local weather exchange and exhibit clear vulnerabilities. The hyperlink
between local weather change, mess-ups, and sustainable improvement has
grown to be an international problem [22]. If greenhouse fuel emissions are
no longer reduced, a number of components of the local weather machine will
proceed to heat and may additionally bear everlasting adjustments that will
lead to giant and irreversible influences that pose serious threats to people
and ecosystems. To manipulate local weather change, large and sustained
discount rates in greenhouse gasoline emissions are necessary. This requires
worldwide cooperation, revolutionary technologies, coverage changes, and
social and financial restructuring. [23] Through these efforts, it can pass
towards a greater sustainable future and mitigate the outcomes of local
weather alternate on the planet and its inhabitants.

4.3 Energy Policy Recommendations

The transport quarter money owed for a sizable percentage of world green-
house fuel emissions and is consequently imperative to accomplishing
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long-term carbon discount targets. As the industrial and construction sectors
show greater potential for energy saving and carbon reduction in the short
term, the transport sector can also play an important role in long-term
emissions reduction through the adoption of advanced electrification and
fuel cell vehicle technologies, combined with the use of carbon-free energy
sources [24]. Key to achieving this goal will be the introduction of low to
negative carbon fuel production technologies, such as electricity, hydrogen,
and alternative liquid fuels, the development and diffusion of which will be
critical to achieving ambitious CO2 emission stabilization targets [25]. This
will require support from a range of policy tools, including but not limited
to:

1. Set and raise fuel economy standards, provide subsidies for electric and
fuel cell vehicles, encourage the development of public transportation,
and control the growth of private cars through licensing and other means.

2. For the transportation of goods, it is possible to reduce transportation
demand and improve transportation efficiency by increasing local pro-
duction, optimizing cargo distribution routes, and increasing the use of
railways and inland shipping [26].

3. Given the long construction cycle of rail and ship infrastructure and
the investment in existing infrastructure and rolling stock, policy imple-
mentation is often slow and requires long-term planning and sustained
effort.

4. To facilitate the rapid deployment of electric and fuel cell vehicles,
immediate action is needed to remove barriers to energy efficiency,
including strengthening research and development, reducing vehicle
purchase costs, and adjusting subsidy mechanisms.

5. At the same time, the government should expand the non-economic
benefits of public awareness of electric and fuel cell vehicles through
the media and the Internet, such as enhancing energy security awareness
and reducing carbon footprint [27].

6. Given that the transport sector is less sensitive to carbon prices than
other sectors, particularly in the absence of active carbon policies,
direct reduction of demand for transport services, facilitation of the
transition to less carbon-intensive modes of transport, and deployment
of low-carbon fuels will be important strategies for achieving emission
reduction targets.

In summary, while the transport sector has certain challenges in achiev-
ing carbon-free mobility, its growing share of carbon emissions makes
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the transport sector an integral part of long-term carbon reduction efforts.
Through proactive carbon policies and corresponding measures, the transport
sector is expected to play an important role in significantly reducing CO2

emissions.

5 Conclusion

At present, the renewable electricity enterprise has end up a warm theme
in the world. In this paper, an optimization scheme combining cumulative
order, history cost coefficient, and preliminary fee is proposed to enhance the
overall performance of the gray prediction model. In addition, the parameter
aggregate optimization technique and the parameter adjustment mechanism
based totally on the particle swarm optimization algorithm are introduced,
and the discount error check of the mannequin is carried out. Using known
energy consumption data, this paper validates the newly developed grey
prediction model and compare it with two other types of models. Here are
our main conclusions.

1. In each of the becoming stage and the prediction stage, the new grey pre-
diction mannequin indicates the pleasant overall performance amongst
the three models. The annual forecasting overall performance index
additionally confirms that the prediction accuracy of the new gray
forecasting mannequin is fairly stable, and the prediction satisfaction
is much less affected even when the forecasting duration is extended.

2. The overall performance of the new grey prediction technique in wind
velocity prediction is substantially higher than that of the common time
collection evaluation and exponential smoothing method. Compared
with the two methods, the RMSE of the new approach is decreased
by using 127.12% and 160.59% respectively, and the error fee is addi-
tionally decreased via 3.16% and 4% respectively. In the radiation
intensity prediction, the RMSE reduction of the new method is 105.1%
and 250.6%, respectively, and the error rate is reduced by 8.03% and
19.13%.
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