Production of Clean Energy from Cyanobacterial Biochemical Products
Keywords:
Photon Particle, Cyanobacteria, Biochemical Mechanism, Photo Bioreactor, and Clean Energy.Abstract
In this article, an improved technology to produce hydrogen
biologically will be discussed as a source of clean energy. The photo-
chemical reaction among photons, ultraviolet (UV) light, and cyano-
bacterial biomaterials in photobioreactors offer a unique methodology
for producing hydrogen energy. A photobioreactor is a bioreactor that
utilizes a light source to cultivate phototrophic microorganisms. Using
this technology, hydrogen production is significantly higher than any
other technology that has ever been used. This hydrogen evolution is
a product of the ultimate reaction of agitated photon electrons into the
cyanobacterial biomolecules, where hydrogenase enzymes function
as an active catalyst. The evolved hydrogen is then clarified using an
electronic semiconductor-based sensor gas chromatograph with the ef-
ficiency recorded using a computerized data acquisition (DAQ) system.
The results confirmed that this larger amount of hydrogen formation
could be an interesting source of clean energy production. It is sug-
gested that producing hydrogen using cyanobacteria could be a method
of meeting future global energy demand. The purpose of this article is
to describe this process and discuss its benefits.
Downloads
References
Abed, R., Dobretsov, S., and Sudesh, K. (2009). Applications of cyanobacteria in bio-
technology. Applied Microbiology 106:1–12.
Afgan, N., Carvalho, M. (2002). Multi-criteria assessment of new and renewable en-
ergy power plants. Energy 27:739–755.
Akkerman, I., Janssen, M., Rocha J., and Wijffels, R. (2002). Photobiological hydrogen
production: photochemical efficiency and bioreactor design. International Journal of
Hydrogen Energy 27:1195–1208.
Ananyev, G, Carrieri, D, and Dismukes, G. (2008). Optimization of metabolic capac-
ity and flux through environmental cues to maximize hydrogen production by the
cyanobacterium “Arthro- spira (Spirulina) maxima.” Applied Environmental Microbi-
ology 74:6102–6113.
Angermayr, S., Hellingwerf, K., Lindblad, P, and de Mattos, M. (2009). Energy bio-
technology with cyanobacteria. Current Opinion Biotechnology 20:257–263.
Arik, T., Gunduz, U., Yucel, M., Turker, L., Sediroglu, V., and Eroglu, I. (1996). Pho-
toproduction of hydrogen by Rhodobacter sphaeroides O.U.001. Proceedings of the
th World Hydrogen Energy Conference. Stuttgart, Germany. 3:2417–2424.
Asada, Y., Miyake, J. (1999). Photobiological hydrogen production. Journal of Biosci-
ence Bioengineering 88:1–6
Atsumi, S., and Hanai, T., Liao, J. (2008). Non-fermentative pathways for synthesis of
branched-chain higher alcohols as biofuels. Nature 451:86–89.
Behera, B., Balasundaram, R., Gadgil, K., and Sharma, D. (2007). Photobiological pro-
duction of hydrogen from Spirulina for fueling fuel cells. Energy Source 29:761–767.
Bishop, P., and Premakuma, R., Alternative nitrogen fixation systems (1992). In: Sta-
cey, G., Burris, R., Evans, H., editor. Biological nitrogen fixation. New York: Chapman
& Hall, 736–762.
Böhme, H, (1998). Regulation of nitrogen fixation in heterocyst-forming cyanobacte-
ria. Trends in Plant Science 3:346-351.
Boison, G., Bothe, H., Hansel, A., and Lindblad, P. (1999). Evidence against a com-
mon use of the diaphorase subunits by the bidirectional hydrogenase and by the
respiratory complex I in cyanobacteria. FEMS Microbiology Letter 174:159–165.
Table 2. Comparative costs of electrical energy generation (cents/kWh).
Strategic Planning for Energy and the Environment
Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., and
Stymne, S. (2000). Phospholipid: diacylglycerol acyl- transferase: an enzyme that
catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants.
Proceedings of National Academy of Science, U.S. 97:6487–6492.
Das, D., and Veziroglu, T.N. (2001). Hydrogen production by biological processes: a
survey of literature. International Journal of Hydrogen Energy 26:13–28.
Dutta, D., De, D., Chaudhuri, S., and Bhattacharya, S. (2005). Hydrogen production
by Cyanobacteria. Microbial Cell Fact, 4:1–11.
Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiology
Review 56:340–373.
Flores, E., Herrero, A. (1994). Assimilatory nitrogen metabolism and its regulation.
In: Bryant D., editor. The molecular biology of cyanobacteria. Dordrecht: Kluwer
Academic Publishers, 487–517.
Hall, D., and Moss, P. (1983). Biomass for energy in developing countries.
Hall, D., Markov, S., Watanabe, Y., and Rao, K. (1995). The potential applications of
cyanobacterial photosynthesis for clean technologies. Photosyntetic Research 46:159–
Heyer, H., Stal, L., and Krumbein, W. (1989). Simultaneous heterolatic and acetate
fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobi-
cally in the dark. Arch Microbiology 151:558–564.
Hoekema, S., Bijmans, M., Janssen, M., Tramper, J., and Wijffels, R. (2002). A pneu-
matically agitated flat-panel photobioreactor with gas re-circulation: anaerobic pho-
toheterotrophic cultivation of a purple non-sulfur bacterium. International Journal of
Hydrogen Energy 27:1331–1338.
Kentemich, T., Haverkamp, G., and Bothe, H. (1991). The expression of a third nitro-
genase in the cyanobacterium Anabaena variabilis. Z Naturforsch 46:217–222.
Kentemich, T., Danneberg, G., Hundeshagen, B., and Bothe, H. (1988). Evidence for
the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobac-
terium Anabaena variabilis. FEMS Microbiology Letter, 51:19–24.
Madamwar, D., Garg, N., and Shah, V. (2000). Cyanobacterial hydrogen production.
World Microbial Biotechnology 16:757–767.
Masepohl, B., Schoelisch, K., Goerlitz, K., Kutzki, C., and Böhme, H. (1997). The het-
erocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is
important but not essential for nitrogen fixation. Molecular Gen Genetics 253:770–776.
McNeely, K., Xu, Y., Bennette, N., Bryant, D.A., and Dismukes, G.C, (2010). Redirect-
ing reductant flux into hydrogen production via meta- bolic engineering of fermen-
tative carbon metabolism in a cyanobacterium. Applied Environmental Microbiology
:5032–5038.
Hossain, Md. (2016). In situ geothermal energy technology: an approach for building
cleaner and greener environment. 17: 49–55.
Miro’n, A., Go’mez, A., Camacho, F., and Grima, E., Chisti, Y. (1999). Comparative
evaluation of compact photobioreactors for large-scale monoculture of microal-
gae. Journal of Biotechnology 70:249–270.
Masukawa, H., Nakamura, K., Mochimaru, M., and Sakurai, H. (2001). Photobiologi-
cal hydrogen production and nitrogenase activity in some heterocystous cyanobac-
teria. In: Miyake, J, Matsunaga, T., San Pietro, A., editor. BioHydrogen II Elsevier,
–66.
Orme-Johnson, W.H. (1992). Nitrogenase structure: where to now? Science. 257:1639–
Pinzon-Gamez, N., Sundaram, S., and Ju, L. (2005). Heterocyst differentiation and H2
Winter 2017, Vol. 36, No. 3
production in N2-fixing cyanobacteria. Technical program.
Phillips, E., and Mitsui, A. (1983). Role of light intensity and temperature in the regu-
lation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp.
Strain Miami BG7. Applied Environmental Microbiology 45:1212–1220.
REN21 (2007). Global status report. Ren21 1–52.
Schmitz, O., Boison, G., Hilscher, R., Hundeshagen, B., Zimmer, W., Lottspeich, F.,
and Bothe, H. (1995). Molecular biological analysis of a bidirectional hydrogenase
from cyanobacteria. European Journal of Biochemistry 233:266–276.
SERI (1984). Fuel option from microalgae with representative chemical composition.
Stal, L., and Krumbein, W. (1985). Oxygen protection of nitrogenase the aerobically
nitrogen fixing, non-heterocystous cyanobacterium Oscillatoria sp. Archives of Micro-
biology 143:72–76.
Suh, S., and Lee, S. (2003). A light distribution model for an internally radiating pho-
tobioreactor. Biotechnology and Bioengineering 82:180–189.
Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wunschiers, R., and Lindblad, P.
(2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Molecu-
lar Biology Review 66:1–20.
Thiel, T. (1993). Characterization of genes for an alternative nitrogenase in the cyano-
bacterium Anabaena variabilis. Journal of Bacteriology 175:6276–6286.
Thiel, T., and Pratte, B. (2001). Effect on heterocyst differentiation of nitrogen fixation
in vegetative cells of the cyanobacterium anabaena variabilis ATCC 29413. Bacteriol
:280–286.
Tsygankov, A., Serebryakova, L., Rao, K., and Hall, D. (1998). Acetylene reduction
and hydrogen photoproduction by wild type and mutant strains of anabaena at dif-
ferent CO2 and O2 concentrations. FEMS Microbiology Letter, 167:13–1.7.
Oost, J., Bulthuis, B., Feitz, S., Krab, K., and Kraayenhof, R. (1989). Fermentation me-
tabolism of the unicellular cyanobacterium cyanothece PCC 7822. Arch Microbiology
:415–419.
Weyman, P. (2010). Expression of oxygen-tolerant hydrogenases in synechococcus
elongatus. 10th Cyanobacterial Molecular Biology Workshop. June 11–15, Lake Ar-
rowhead, USA.
Wünschiers, R., Batur, M., and Lindblad, P. (2003). Presence and expression of hy-
drogenase specific C-terminal endopeptidases in cyanobacteria. BMC Microbiology
:8