Electrochemical Dechlorination of Trichloroethylene by Manganese Phthalocyanine: Performance and Mechanisms
DOI:
https://doi.org/10.13052/spee1048-5236.4047Keywords:
Electrochemical, dechlorination, TCE, MnPc, DFT.Abstract
Trichloroethylene (TCE) is one of the most abundant persistent organic pollutant in subsurface environment. TCE can be reduced electrochemically, but the extremely negative applied potential limits the application of this technology. Manganese phthalocyanine (MnPc) catalyst was used for the electrochemical reductive dechlorination of TCE. The results show that MnPc can be reduced by electrons attachment at −-0.21 V, −-1.22 V and −-1.77 V, respectively. With the decrease of applied potential from −-0.3 V to −-1.8 V, the transformation from TCE to dichloroethylene (DCE) efficiency increased from 19.9% to 41.8% after 5 hours of reaction. Although the electron transfer ability was enhanced with applied potential decreasing, the intensive HER caused the electron selectivity decreased when MnPc attached more electrons. MnPc catalyze the electrochemical reduction of TCE, which has potential application on the remediation of TCE-contaminated groundwater.
Downloads
References
J. Ai, W. Yin, H.C.B. Hansen, Fast dechlorination of chlorinated
ethylenes by green rust in the presence of bone char. Environmental
Science & Technology Letter, 6 (2019) 191–196.
A.J. Rabideau, J.M. Blayden, C. Ganguly, Field performance of air-
sparging system for removing TCE from groundwater. Environmental
Science & Technology, 33 (1999) 157–162.
K.Z. Guyton, K.A. Hogan, C.S. Scott, G.S. Cooper, A.S. Bale, L.
Kopylev, S. Barone, S.L. Makris, B. Glenn, R.P. Subramaniam, Human
health effects of tetrachloroethylene: key findings and scientific issues.
Environmental Health Perspectives 122 (2014) 325–334.
H. Liu, T.A. Bruton, F.M. Doyle, D.L. Sedlak, In situ chemical oxidation
of contaminated groundwater by persulfate: Decomposition by Fe(III)-
and Mn(IV)-containing oxides and aquifer materials. Environmental
Science & Technology, 48 (2014) 10330–10336.
C. Lei, F. Liang, J. Li, W. Chen, B. Huang, Electrochemical reductive
dechlorination of chlorinated volatile organic compounds (Cl-VOCs):
Effects of molecular structure on the dehalogenation reactivity and
mechanisms. Chemical Engineering Journal, 358 (2019) 1054–1064.
Electrochemical Dechlorination of TCE by MnPc 449
G. Jiang, M. Lan, Z. Zhang, X. Lv, Z. Lou, X. Xu, F. Dong, S. Zhang,
Identification of active hydrogen species on palladium nanoparticles for
an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol
in water. Environmental Science & Technology, 51 (2017) 7599–7605.
P.K. Sharma, P.L. Mccarty, Isolation and Characterization of a Fac-
ultatively Aerobic Bacterium That Reductively Dehalogenates Tetra-
chloroethene to cis-1,2-Dichloroethene. Applied and Environmental
Microbiology, 62 (1996) 761–765.
G.M. Kle`eKa, S.J. Gonsior, Reductive dechlorination of chlorinated
methanes and ethanes by reduced iron (II) porphyrins. Chemosphere,
(1984) 391–402.
U.E. Krone, K. Laufer, R.K. Thauer, H. Hogenkamp, Coenzyme F430
as a possible catalyst for the reductive dehalogenation of chlorinated
C1 hydrocarbons in methanogenic bacteria. Biochemistry 28 (1989)
–10065.
L. Ukrainczyk, M. Chibwe, T.J. Pinnavaia, S.A. Boyd, Reductive
dechlorination of carbon tetrachloride in water catalyzed by mineral-
supported biomimetic cobalt macrocycles. Environmental Science &
Technology, 29 (1995) 439–445.
G. Gan, X. Li, L. Wang, S. Fan, J. Mu, P. Wang, G. Chen, Active
sites in single-atom Fe-Nx-C nanosheets for selective electrochemical
dechlorination of 1,2-dichloroethane to ethylene. ACS Nano, 14 (2020)
–9937.
Y. Xu, Z. Yao, Z. Mao, M. Shi, B. Liu, Single-Ni-atom catalyzes aque-
ous phase electrochemical reductive dechlorination reaction. Applied
Catalysis B: Environmental, 277 (2020) 119057.
L.J. Boucher, Manganese porphyrin complexes. Coordination Chem-
istry Reviews, 7 (1972) 289–329.
A. Arshak, S. Zleetni, K. Arshak, β-radiation sensor using optical and
electrical properties of manganese phthalocyanine (MnPc) thick film.
Sensors, 2 (2002) 174–184.
E. Urbain, F. Ibrahim, M. Studniarek, F.N. Nyakam, L. Joly, J. Arabski,
F. Scheurer, F. Bertran, P. Le Fevre, G. Garreau, Cu metal/Mn phthalo-
cyanine organic spinterfaces atop Co with high spin polarization at room
temperature. Advanced Functional Materials, (2017).
J. Deng, X.-M. Hu, E. Gao, F. Wu, W. Yin, L.-Z. Huang, D.D. Diony-
siou, Electrochemical reductive remediation of trichloroethylene con-
taminated groundwater using biomimetic iron-nitrogen-doped carbon.
Journal of Hazardous Materials, 419 (2021) 126458.
J. Deng et al.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, J.R.C. M. A.
Robb, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,
M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg,
D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.
Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T.
Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C.
Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman, and D. J. Fox,, GAUSSIAN 09. Gaussian, Inc.,
Wallingford, CT, p. 2009., in.
A.D. Becke, Density-functional thermochemistry. III. The role of exact
exchange. The Journal of Chemical Physics, 98 (1998) 5648–5652.
P. Jeffrey, H. Willard, R. Wadt, Ab initio effective core potentials for
molecular calculations. Potentials for the transition metal atoms Sc to
Hg. The Journal of Chemical Physics, 82 (1985) 270–270.
T. Chen, J. Ma, Q. Zhang, Z. Xie, Y. Zeng, Degradation of propra-
nolol by UV-activated persulfate oxidation: Reaction kinetics, mecha-
nisms, reactive sites, transformation pathways and Gaussian calculation.
Science of the Total Environment, 690 (2019) 878–890.
A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model
based on solute electron density and on a continuum model of the solvent
defined by the bulk dielectric constant and atomic surface tensions. The
Journal of Physical Chemistry B, 113 (2009) 6378–6396.
T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer.
Journal of Computational Chemistry, 33 (2012) 580–592.
S.K. Eshkalak, M. Khatibzadeh, E. Kowsari, A. Chinnappan, S. Ramakr-
ishna, A novel surface modification of copper (II) phthalocyanine
with ionic liquids as electronic ink. Dyes and Pigments, (2018)
S0143720817320454.
J.D. Wright, Gas adsorption on phthalocyanines and its effects on
electrical properties. Progress in Surface Science, 31 (1989) 1–60.
J. Zhang, Q. Ji, H. Lan, G. Zhang, H. Liu, J. Qu, Synchronous reduction–
oxidation process for efficient removal of trichloroacetic acid: H*
Electrochemical Dechlorination of TCE by MnPc 451
initiates dechlorination and ·OH is responsible for removal efficiency.
Environmental Science & Technology, 53 (2019) 14586–14594.
Y. Hu, X. Peng, Z. Ai, F. Jia, L. Zhang, Liquid Nitrogen Activation
of Zero-Valent Iron and Its Enhanced Cr(VI) Removal Performance.
Environmental Science & Technology, 53 (2019) 8333–8341.
J. Deng, X. Zhan, F. Wu, S. Gao, L.-Z. Huang, Fast dechlorination of
trichloroethylene by a bimetallic Fe(OH)2/Ni composite. Separation and
Purification Technology, 278 (2022) 119597.
T. Kataoka, Y. Sakamoto, Y. Yamazaki, V.R. Singh, A. Fujimori, Y.
Takeda, T. Ohkochi, S.-I. Fujimori, T. Okane, Y. Saitoh, H. Yamagami,
A. Tanaka, Electronic configuration of Mn ions in the π-d molecular fer-
romagnet β-Mn phthalocyanine studied by soft X-ray magnetic circular
dichroism. Solid State Communications, 152 (2012) 806–809.