Forecasting of Solar Irradiation Based on the Deep Learning Model Using Complete Ensemble Empirical Mode Decomposition Technique
DOI:
https://doi.org/10.13052/spee1048-5236.43411Abstract
Since solar energy plants have been developing so quickly in recent years, accurate solar power forecasting plays a significant role in contemporary intelligent grid systems and setup a bilateral contract negotiation between suppliers and customers. This paper introduces a novel three-step method for predicting two-channel solar irradiance that combines cutting-edge techniques like Bidirectional Long Short-Term Memory, Wasserstein Generative adversarial Networks and Complete Ensemble Empirical Mode Decomposition with adaptive noise. This methodology that is being suggested involves a framework of decomposition integration which allows for the effective isolation of the solar output signal into sub-sequences that are simple and can be differentiated based on their unique frequency disparities. This is achieved after the subsequences have been separated, and then they are subjected to individual prediction models. The high subsequences are predicted using the WGAN model, while the low subsequences are forecasted using the Bi-LSTM model. This approach ensures the specific characteristics of each subsequence are captured in the prediction process. The experimental result shows that the proposed model surpasses the performance of the suboptimal model in terms of evaluation metrics: RMSE, MAPE and R2. Compared to the suboptimal model, the RMSE, MAPE of all seasons
Downloads
References
Niu, Zhewen., Yu, Zeyuan., Tang, Wenhu, Wu, Qinghua., and Reformat, Marek. (2020). Wind Power Forecasting using attention based Gate Recurrent Unit network. Energy, Elsevier. 196(C), DOI: 10.1016/j.energy.2020.11708.
Wang, Saisai., Chen, Jie., Wang, Hua. and Zhang, Dianzhen. (2019). Degradation evaluation of slewing bearing using HMM and improved GRU. Measurement, 146, 385–395. DOI: 10.1016/j.measurement.2019.06.038.
Yan, M., Wang, J., Li, J., Zhang, K. and Yang, Z. (2020). Traffic scene semantic segmentation using self-attention mechanisum and bidirectional GRU to correlate context. Neurocomputing, 386, 293–304, DOI: 10.1016/j.neuron.2019.12.007.
Yan, K., Chen, X., Zhou, X., Yan, Z. and Ma, J. (2022). Physical Model Informed Fault Detection and Diagnosis of Air Handling Units Based on Transformer Generative Adversarial Network. IEEE Trans. Ind. Inform. 19, 2192–2199. DOI: 10.1109/tii.2022.3193733.
Zhou, H., Liu, Q., Yan, K. and Du, Y. (2021). Deep learning enhanced solar energy forecasting with AI-driven IoT. Wireless Communication and MobileComputing.67, 1–11. DOI: 10.1155/2021/9249387.
Feng, Z.K., Huang, Q.Q, Niu, W.J., Yang, T. Wang, J.Y, Wen, S.P. (2022). Multi-step-ahead solar output time series prediction with gate recurrent unit neural network using data decomposition and cooperation search algorithm. Energy. 261, 125217. DOI: 10.1016/j.energy.2022.125217.
Iqbal, S., Khan, S.N., Sajid, M., Khan, J., Ayaz, Y., and Waqas, A. (2022). Impact and performance efficiency analysis of grid tied solar photovoltaic system based on installation site environmental factors. Energy & Environment. 0(0), DOI: 10.1177/0958305X221106618.
Mustafa, R.J., Gomaa, M.R., Al-Dhaifallah, M., and Rezk, H. (2022). Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12, 608. DOI: 10.3390/su12020608.
Benali, L., Notton, G., Fouilloy, A., Voyant, C., and Dizene, R. (2019). Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy, 132, 871–884. DOI: 10.1016/j.renene.2018.08.044.
Cornejo-Bueno, L., Casanova-Mateo, C., Sanz-Justo, J., and Salcedo-Sanz, S. (2019). Machine learning regressor for solar radiation estimation from satellite data. Solar Energy, 183, 768–775. DOI: 10.1016/j.solener.2019.03.079.
Liu, D., and Sun, K. (2019). Random forest solar power forest based on classification optimization. Energy, 187, 115940. DOI: 10.1016/j.energy.2019.115940.
Van Deventer, W. (2019). Short-term PV power forecasting using hybrid GASVM technique. Renewable Energy, 140, 367–379. DOI: 10.1016/j.renene.2019.02.087.
Shadab, A., Said, S., and Ahmad, S. (2019). Box-Jenkins multiplicative ARIMA modelling for prediction of solar radiation: A case study. International Journal of Energy Water Resources, 3, 305–318. DOI: 10.1007/s42108-019-00037-5.
Ghimire, S., Deo, R. C., Downs, N. J., and Raj, N. (2019). Global solar radiation prediction by ANN integrated with European centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. DOI: 10.1016/j.jclepro.2019.01.158.
Liu, Y., Zhou, Y., Chen, Y., Wang, D., Wang,Y., and Zhu, Y. (2020). Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China. Renewable Energy, 146, 1101–1112. DOI: 10.1016/j.renene.2019.07.053.
Dong, J., (2020). Novel stochastic methods to predict short term solar radiation and photovoltaic power. Renewable Energy, 145, 333–346. DOI: 10.1016/j.renene.2019.05.073.
Kumar. S, Kaur. T. (2020). Efficient solar radiation estimation using cohesive artificial neural network technique with optimal synaptic weights. Proceedings of the institution of Mechanical Engineers. Part A: Journal of Power and Energy. 234(6), 862–873. DOI: 10.1177/0957650919878318.
D. Ying, Wang, Bofu., and Lu, Zhiming. (2020). A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting. Energy Conversion and Management. 212,112779. DOI: 10.1016/j.enconman.2020.112779.
S. Rajkumar., B.Shaw, Jyoti., and Ranjan. Nayak. (2021). Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. International journal of Engineering science and Technology. 24, 1180–1200. DOI: 10.1016/j.jestch.2021.02.016.
Li, C., Zhang. and Y, Zhao. G. (2021). Hourly solar irradiance prediction using deep BiLSTM network. Earth Sci Inform.14, 299–309. DOI: 10.1007/s12145-020-00511-3.
S. Pardeep, D. Manoj, S. Sumit. (2022). A dual decomposition with error correction strategy based improved hybrid deep learning model to forecast solar irradiance. Energy Sources, A Part: Recovery, Utilization and Environmental effects. 44(1), 1583–1607. DOI: 10.1080/15567036.2022.2056267.
S. Pardeep, M. Duhan, S. Saroha. (2022). An ensemble method to forecast 24-hr. ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network. (2022). Earth Sci Inform. 15(1): 291–306. DOI: 10.1007/s12145-021-00723-1.
Feng. Cong., Zhang. F, Zhang. Wenqi, and Hodge. Bri-Mathias. (2022). Convolutional neural networks for intra-hour solar forecasting based on sky images sequences. Applied Energy. 2022; 310: 118438. DOI: 10.1016/j.apenergy.2021.118438.
Perera, T., Udayakumar, C. (2023). ‘Voltage Unbalance Assessment of Solar PV Integrated Low Voltage Distribution System in Sri Lanka Using Monte Carlo Simulation’, Journal of Solar Energy Research, 8(2), pp. 1357–1366. DOI: 10.22059/jser.2023.350730.1262.
Zarei, A., Ghaffarzadeh, N. (2023). ‘Optimal Demand Response-based AC OPF Over Smart Grid Platform Considering Solar and Wind Power Plants and ESSs with Short-term Load Forecasts using LSTM’, Journal of Solar Energy Research, 8(2), pp. 1367–1379. DOI: 10.22059/jser.2023.352567.1271.
Bhargva, M., Sharma, M., Yadav, A., Batra, N., Behl, R. (2023). ‘Productivity Augmentation of a Solar Still with Rectangular Fins and Bamboo Cotton Wick’, Journal of Solar Energy Research, 8(2), pp. 1410–1416. DOI: 10.22059/jser.2023.356414.1279.
Zeng, Y., Chen, J., Jin, N., Jin, X., and Du, Y. (2022). Air quality forecasting with hybrid LSTM and extended stationary wavelet transform. Build. Environmental. 213, 108822. DOI: 10.21203/rs.3.rs-357905/v1.
Lan, H., Yin, H., Hong, Y.Y., Wen, S., David, C.Y. and Cheng, P. (2018). Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route. Applied Energy, 211, 15–27. DOI: 10.1016/j.apenergy.2017.11.014.
Mohammadi, K., Shamshirband, S., Tong, C.W., Arif, M.; Petkovi´c, D., and Ch, S. (2015). A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers. Management 92, 162–171. DOI: 10.1016/j.enconman.2014.12.050.
Zhaohua Wu, N. (2010). Ensemble empirical mode decomposition: A noise assiette Biomed. Technology. 55, 193–201. DOI: 10.1142/S1793536909000047.
NSRDB (nrel.gov).
www.delhitourism.org.
Gupta. A., Gupta. Kapil., and Saroha. Sumit. (2022). Short term solar irradiation forecasting using CEENDAN decomposition based BiLSTM model optimized by Genetic Algorithm. International Journal of Renewable Energy Development. 11(3), 736–650. DOI: 10.14710/ijred.2022.45314.
Kumari. P., and Toshniwal P. (2021). Extreme Gradient boosting based ensemble learning approach to forecast hourly solar irradiance. Journal of Cleaner Production. 279(10), 123285. DOI: 10.1016/j.clepro.2020.123285.
Zhang. Chao., and Ma. Jinwen. (2017). CNN-LSTM Neural Network model for quantitative strategy analysis in stock markets. Proceedings of International Conference on neural information processing (ICONIP). 10635, 198–206. DOI: 10.1007/978-3-319-70096-0_21.