Analysis of Highly Sensitive Photonic Crystal Biosensor for Glucose Monitoring
Keywords:
Biosensor, finite element time domain method, photonic crystal, sensitivity, transmissionAbstract
In this study, a novel compact and fully integrated 2D photonic crystal (PhC) biosensor with high sensitivity has been proposed for Glucose monitoring. The simulation results are obtained using 2D finite element time domain method (FETDM). To evaluate the performance of the suggested design, the transmission spectrum through the reported structure has been calculated. The effect of the structure geometrical parameters of the biosensor is studied to maximize the biosensor sensitivity. The suggested biosensor offers high sensitivity of 422 nm/RIU with high linearity. Additionally, the suggested biosensor has a simple design and is easy for fabrication. The enhancement of the sensitivity of the PhC biosensor is very important to amplify the detection of the small variation in analyte’s physical properties. Therefore, the achieved sensitivity enhancement can improve the applications of Glucose monitoring.
Downloads
References
A. P. F. Turner, I. Karube, and G. S. Wilson, Biosensors Fundamentals, and Applications. Oxford University Press, 1987.
F. G. ´´ Chemical Sensors, and Biosensors: Fundamentals and Applications. John Wiley & Sons, 2012.
A. Cavalcanti, B. Shirinzadeh, M. Zhang, and L. C. Retly, “Nanorobot hardware architecture for medical defense,” Sensors, vol. 8, no. 5, pp. 2932- 2958, May 2008.
F. Hsiao and C. Lee, “Computational study of photonic crystals nano-ring resonator for biochemical sensing,” IEEE. Sens. J., vol. 10, no. 7, pp. 1185- 1191, July 2010.
S. Olyaee, S. Najafgholinezhad, and H. A. Banaei, “Four-channel label-free photonic crystal biosensor using nanocavity resonators,” Photonic Sensors, vol. 3, no. 3, pp. 231-236, September 2013.
S. Najafgholinezhad and S. Olyaee, “A photonic crystal biosensor with temperature dependency investigation of micro-cavity resonator,” Optik, vol. 125, pp. 6562-6565, November 2014.
S. I. Azzam, Mohamed F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Journal of Optical Quantum Electronics, vol. 48, no. 142, pp. 1-11, February 2016.
M. F. O. Hameed, M. El-Azab, A. M. Heikal, S. M. El-Hefnawy, and S. S. A. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technology Letter, vol. 28, no. 1, pp. 59-62, October 2015.
R. M. Younis, N. F. F. Areed, and S. S. A. Obayya, “Fully integrated AND and OR optical logic gates,” IEEE Photonics Technology Letters, vol. 26, no. 19, pp. 1900-1903, October 2014.
M. F. O. Hameed, A. M. Heikal, B. M. Younis, M. Abdelrazzak, and S. S. A. Obayya, “Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter,” Journal of Optics Express, vol. 23, no. 6, pp. 7007-7020, March 2015.
M. F. O. Hameed, M. Abdelrazzak, and S. S. A. Obayya, “Novel design of ultra-compact triangular lattice silica photonic crystal polarization converter,” IEEE J. Lightwave Technology, vol. 31, no. 1, pp. 81-86, January 2013.
N. F. F. Areed and S. S. A. Obayya, “Novel design of symmetric photonic bandgap based image encryption system,” Prog. Electromagn. Res. C, vol. 30, pp. 225-239, June 2012.
N. F. F. Areed and S. S. A. Obayya, “Novel alloptical liquid photonic crystal router,” IEEE Photonic Tech. L., vol. 25, no. 13, pp. 1254-1256, May 2013.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light. Princeton University Press, 2007.
S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavitycoupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron., vol. 26, pp. 4024-4031, June 2011.
D. Dorfner, T. Zabel, T. Hürlimann, N. Hauka, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron., vol. 24, pp. 3688-3692, May 2009.
S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fibercoupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett., vol. 94, 133503, April 2009.
M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. Van Ijzendoorn, and R. W. Van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express, vol. 18, no. 5, pp. 4049-4056, March 2010.
S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a CW photonic crystal nanolaser and its array configuration,” Opt. Express, vol. 16, no. 11, pp. 8174-8180, May 2008.
H. Butt, Q. Dai, and T. D. Wilkinson, “Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagn. Res., vol. 113, pp. 181-183, February 2011.
P. Seshu, Text Book of Finite Element Analysis. PHI, 2012.
S. Obayya, Computational Photonics. John Wiley & Sons, 2011.
H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, L2112, December 1989.
Y. Arakawa, “Progress in GaN-based quantum dots for optoelectronics applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 823-832, August 2002.
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, vol. 48, no. 5, pp. 353, 1986.
C. M. Foster, R. Collazo, Z. Sitar, and A. Ivanisevic, “Aqueous stability of Ga- and N-polar gallium nitride,” Langmuir, vol. 29, pp. 216-220, 2013.
A. Di Carlo, “Tuning optical properties of GaNbased nanostructures by charge screening,” Physica Status Solidi, (a), 183, pp. 81-85, January 2001.
S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, A. H. Onstine, B. P. Gila, F. Ren, B. Lou, and J. Kim, “New applications advisable for gallium nitride,” Materials Today, vol. 5, no. 6, pp. 24-31, June 2002.
X. X. Fu, B. Zhang, X. Kang, J. Deng, C. Xiong, T. Dai, X. Jiang, T. Yu, Z. Chen, and G. Zhang, “GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template,” Opt. Exp., 19(s5), pp. 1104- 1108, 2011.
Y. L. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng., vol. 46, pp. 666-670, September 2008.
H. Sato, H. Iba, T. Naganuma, and Y. Kagawa, “Effects of the difference between the refractive indices of constituent materials on the light transmittance of glass-particle-dispersed epoxymatrix optical composites,” Philosophical Magazine B, vol. 82, no. 13, pp. 1369-1386, 2002.
T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett., vol. 98, 261106, June 2011.
N. V. Triviño, G. Rossbach, U. Dharanipathy, J. Levrat, J. A. Castiglia, J. F. Carlin, K. A. Atlasov, R. Butté, R. Houdré, and N. Grandjean,“Highquality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett., vol. 100, 071103, February 2012.
T. T. Wu, S. Y. Lo, H. M. Huang, C. T. Tsao, T. C. Lu, and S. C. Wang, “High-quality factor nonpolar GaN photonic crystal nanocavities,” Appl. Phys. Lett., vol. 102, 191116, May 2013.
M. Arita, S. Kako, S. Iwamoto, and Y. Arakawa, “Fabrication of AlGaN two-dimensional photonic crystal nanocavities by selective thermal decomposition of GaN,” Appl. Phys. Express, vol. 5, 126502, December 2012.
P. Baroni, Q. Tan, V. Paeder, and M. Roussey, “Switchable photonic crystal cavity by liquid crystal infiltration,” J. Eur. Opt. Soc., vol. 5, 10057, November 2010.
F. Quiñónez, J. W. Menezes, L. Cescato, V. F. Rodriguez-Esquerre, H. Hernandez-Figueroa, and R. D. Mansano, “Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography,” 14(11), pp. 4873-4879, May 2006.
L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Flück, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater., vol. 13, no. 20, October 2001.