Numerical Analysis of Thermal Gradient & Magnetic Field using Ferrofluid Cooling

Authors

  • Harry Garg Optical Devices & Systems CSIR-CSIO, Chandigarh, 160030, India
  • Sahib Singh Mechanical Engineering PEC University of Technology, Chandigarh, 160012, India
  • Vipender Singh Negi Optical Devices & Systems CSIR-CSIO, Chandigarh, 160030, India
  • Ashish Singh Kharola Optical Devices & Systems CSIR-CSIO, Chandigarh, 160030, India
  • Arun K. Lall Mechanical Engineering PEC University of Technology, Chandigarh, 160012, India

Keywords:

Coupled system, ferrofluid, magnetic field, passive cooling, pyromagnetic coefficient

Abstract

Ferrofluid is a colloidal suspension of single domain magnetic particles of diameter approximately 10 nm, coated with a molecular layer of a dispersant and suspended in a liquid carrier. Ferrofluids may form the basis for next generation noiseless, vibration free passive cooling technique. The pumping ability of ferrofluid depends on temperature gradient and magnetic field orientation. The proposed work covers numerical analysis of heat transfer, magnetism and flow characteristics of ferrofluids. Thermal conductivity and viscosity of ferrofluid governs the heat transfer and flow characteristics. The variation of flow with the direction of magnetic field has been investigated in this paper.

Downloads

Download data is not yet available.

References

R. E. Rosenweig, “Ferrohydrodynamics,” Cambridge University Press, London, 1985.

L. J. Love, J. F. Jansen, T. E. Mcknight, Y. Roh, and T. J. Phelps, “Ferrofluid induced flow for microfluidic applications,” IEEE Trans. Mechatronics, vol. 10, pp. 68-76, 2005.

Q. Li, W. Liang, H. Sun, and J. F. Jansen, “Investigation on operational characteristics of a miniature automatic cooling device,” International Journal of Heat and Mass Transfer, vol. 51, pp. 5033-5039, 2008.

T. Strek and H. Jopek, “Computer simulation of heat transfer through ferrofluid,” Journal of Solid State Physics, vol. 244 pp. 1027-103, 2006.

H. Aminfar, M. Mohammadpourfard, and S. Ahangar Zonouzi, “Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field,” Journal of Magnetism and Magnetic materials, vol. 327, pp. 31-42, 2013.

H. Yamaguchi, I. Kobori, Y. Uehata, and K. Shimada, “Natural convection of magnetic fluid in a rectangular box,” Journal of Magnetism and Magnetic materials, vol. 201, pp. 264-267, 1999.

W. Wrobel, E. Fornalik-Wajs, and J. S. Szmyd, “Experimental and numerical analysis of thermomagnetic convection in a vertical annular nclosure,” International Journal of Heat and Fluid Flow, vol. 31, pp. 1019-1031, 2010.

H. Kikura, T. Sawada, and T. Tanahashi, “Convection of a magnetic fluid in a cubic enclosure,” Journal of Magnetism and Magnetic materials, vol. 122, pp. 315-318, 1993.

M. Lajvardi, J. Moghimi-Rad, I. Hadi, A. Gavili, T. DallaliIsfahani, F. Zabihi, and J. Sabbaghzadeh, “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect,” Journal of Magnetism and Magnetic Materials, vol. 322, pp. 3508-3513, 2010.

A. Demuren and H. Grotjans, “Buoyancy-driven flows, beyond the Boussinesq approximation,” Numerical Heat Transfer, Part B: Fundamentals, vol. 56, pp. 1-22, 2009, DOI: 10.1080/104077909 02970080.

J. M. Lopez, F. Marques, and M. Avila, “The Boussinesq approximation in rapidly rotating flows,” J. Fluid Mech., vol. 737, pp. 56-77, 2013.

Downloads

Published

2021-08-18

How to Cite

[1]
H. . Garg, S. . Singh, V. S. . Negi, A. S. . Kharola, and A. K. . Lall, “Numerical Analysis of Thermal Gradient & Magnetic Field using Ferrofluid Cooling”, ACES Journal, vol. 31, no. 07, pp. 853–859, Aug. 2021.

Issue

Section

General Submission