Image Reconstruction Based on the Anatomical Information for Magnetic Resonance Electrical Impedance Tomography

Authors

  • Liling Hao Department of Sino-Dutch Biomedical and Information Engineering Northeastern University, Shenyang, 110169, China
  • Lisheng Xu 1 Department of Sino-Dutch Biomedical and Information Engineering Northeastern University, Shenyang, 110169, China, 2 Key Laboratory of Medical Image Computing (Northeastern University), Ministry of Education, China
  • Benqiang Yang General Hospital of Shenyang Military, Shenyang, 110016, China
  • Gang Li College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, 300072, Tianjin, China

Keywords:

Anatomical information, image reconstruction, magnetic resonance electrical impedance tomography, prior knowledge

Abstract

Magnetic resonance electrical impedance tomography (MREIT) is a noninvasive modality to visualize the internal electrical conductivity distribution of an electrically conductive object using a magnetic resonance imaging (MRI) scanner. The impedance tomography step may provide valuable additional information that cannot be recovered from the MR reconstruction. Previous research has been mostly performed on the reconstruction algorithms and the measurement system. However, the anatomical information provided by the MR images is not in full use. This paper proposes an image reconstruction method based on anatomical information which provides the prior knowledge. The sensitivity algorithm with generalized minimum residual (GMRES) is proposed to reconstruct conductivity image. Simulations of a realistic geometry leg model are performed to show that our approach is not only capable of achieving high accuracy, but also able to improve the speed of the image reconstruction. At the end, a preliminary phantom experiment is presented, illustrating the feasibility of this proposed method.

Downloads

Download data is not yet available.

References

E. J. Woo and J. K. Seo, “Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging,” Physiol. Meas., vol. 29, pp. R1-R26, 2008.

H. J. Kim, T. I. Oh, Y. T. Kim, B. I. Lee, E. J. Woo, J. K. Seo, S. Y. Lee, O. Kwon, C. Park, B. T. Kang, and H. M. Park, “In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system,” Physiol. Meas., vol. 29, pp. 1145-1155, 2008.

J. K. Seo, S. W. Kim, S. Kim, J. J. Liu, E. J. Woo, K. Jeon, and C. O. Lee, “Local harmonic Bz algorithm with domain decomposition in MREIT: computer simulation study,” IEEE Trans. Med. Imaging., vol. 27, pp. 1754-1761, 2008.

A. Nachman, A. Tamasan, and A. Timonov, “Conductivity imaging with a single measurement of boundary and interior data,” Inverse Problems, vol. 23, pp. 2551-2563, 2007.

H. M. Park, H. S. Nam, and O. I. Kwon, “Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT,” Phys. Med. Biol., vol. 56, pp. 2059-2073, 2011.

O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, “Magnetic resonance electrical impedance tomography (MREIT): Simulation study of Jsubstitution algorithm,” IEEE Trans. Biomed. Eng., vol. 49, no. 2, 2002.

O. Birgul, B. M. Eyuboglu, and Y. Z. Ider, “Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns,” Phys. Med. Biol., vol. 48, pp. 653-671, 2003.

O. Kwon, J. Y. Lee, and J. R. Yoon, “Equipotential line method for magnetic resonance electrical impedance tomography,” Inverse Problems, vol. 18, pp. 1089-1100, 2002.

Y. Z. Ider and O. Birgul, “Use of the magnetic field generated by the internal distribution of injected currents for electrical impedance tomography (MR-EIT),” Elektrik, vol. 6, pp. 215-225, 1998.

O. Birgul, B. M. Eyuboglu, and Y. Z. Ider, “Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction,” Phys. Med. Biol., vol. 48, pp. 3485-3504, 2003.

O. Birgul, M. Hamamura, L. Muftuler, and O. Nalcioglu, “Contrast and spatial resolution in MREIT using low amplitude current,” Phys. Med. Biol., vol. 51, pp. 5035-5049, 2006.

Y. Z. Ider and S. Onart, “Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density,” Physiol. Meas., vol. 25, pp. 281-294, 2004.

S. H. Oh, B. I. Lee, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, and J. K. Seo, “Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography,” Phys. Med. Biol., vol. 48, pp. 3101-3116, 2003.

H. J. Kim, Y. T. Kim, A. S. Minhas, W. C. Jeong, E. J. Woo, J. K. Seo, and O. J. Kwon, “In vivo highresolution conductivity imaging of the human leg using MREIT: The first human experiment,” IEEE Trans. Med. Imaging., vol. 28, pp. 1681-1687, 2009.

C. Park, O. Kwon, E. J. Woo, and J. K. Seo, “Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT),” IEEE Trans. Med. Imaging., vol. 23, pp. 388-394, 2004.

N. Gao, S. A. Zhu, and B. He, “A new magnetic resonance electrical impedance tomography (MREIT) algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity,” Phys. Med. Biol., vol. 51, pp. 3067- 3083, 2006.

B. M. Eyuboglu, V. E. Arpinar, and R. Boyacioglu, “Comparison of magnetic resonance electrical impedance tomography (MR-EIT) reconstruction algorithms,” 7 th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, pp. 700-703, 2010.

B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, J. K. Seo, J. Y. Lee, and W. S. Baek, “Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes,” Phys. Med. Biol., vol. 48, pp. 1971-1986, 2003.

G. Z. Xu, H. L. Wu, S. Yang, S. Liu, Y. Li, Q. X. Yang, W. L. Yan, and M. S. Wang, “3-D electrical impedance tomography forward problem with finite element method,” IEEE T. Magn., vol. 41, pp. 1832-1835, 2005.

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, pp. 2271-2293, 1996.

T. J. C. Faes, H. A. Meij, J. C. Munck, and R. M. Heethaar, “The electric resistivity of human tissues (100 Hz-10 MHz): A meta-analysis of review studies,” Physiol. Meas., vol. 20, no. 4, pp. R1-R10, Nov. 1999.

R. Sadleir, S. Grant, S. U. Zhang, B. I. Lee, H. C. Pyo, S. H. Oh, C. Park, E. J. Woo, S. Y. Lee, O. Kwonand, and J. K. Seo, “Noise analysis in MREIT at 3 and 11 Tesla field strength,” Physiol. Meas., vol. 26, pp. 875-884, 2005.

Downloads

Published

2021-08-18

How to Cite

[1]
L. . Hao, L. . Xu, B. . Yang, and G. . Li, “Image Reconstruction Based on the Anatomical Information for Magnetic Resonance Electrical Impedance Tomography”, ACES Journal, vol. 31, no. 06, pp. 700–705, Aug. 2021.

Issue

Section

General Submission