Compact Implantable Rectenna with Light-Emitting Diode for Implantable Wireless Optogenetics

Authors

  • Yuehang Xu School of Electronic Engineering University of Electronic Science and Technology of China, Chengdu 611731, China
  • Yu Lan School of Electronic Engineering University of Electronic Science and Technology of China, Chengdu 611731, China
  • Yijie Qiu School of Electronic Engineering University of Electronic Science and Technology of China, Chengdu 611731, China
  • Ruimin Xu School of Electronic Engineering University of Electronic Science and Technology of China, Chengdu 611731, China

Keywords:

Flexible application, implantable antenna, LCP, rectenna, wireless optogenetic

Abstract

In this paper, a compact rectenna which is capable to operate at 2.45 GHz for wireless implanted optogenetic stimulation is proposed. The rectenna consists of a monopole antenna and a rectifier circuit which drives the on-board blue light-emitting diode (LED). The presented rectenna is fabricated on 50 ?m liquid crystalline polymer (LCP) substrate and has a dimension of 7 mm × 7.2 mm. The measured results of the rectenna embedded in the pork shows that the integrated LED can be lit wirelessly under the maximum permissible human exposure limit in controlled environments.

Downloads

Download data is not yet available.

References

Y. J. Qiu, Y. H. Jung, S. Lee, T. Y. Shih, J. H. Lee, Y. H. Xu, W. G. Lin, N. Behdad, and Z. Q. Ma, “Compact parylene-c-coated flexible antenna for WLAN and upper-band UWB applications,” Electronic Letters, vol. 50, no. 24, pp. 1782-1784, Nov. 2014.

Y. Lan, Y. H. Xu, C. S. Wang, Z. Wen, Y. J. Qiu, T. D. Mei, Y. Q. Wu, and R. M. Xu, “Flexible microwave filters on ultra thin liquid crystal polymer substrate,” IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, pp. 1- 4, May 2015.

S. Park, J. H. Ahn, X. Feng, S. D. Wang, Y. G. Huang, and J. A. Rogers, “Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates,” Advanced Functional Materials, vol. 18, no. 18, pp. 2673-2684, Sep. 2008.

C. H. Lee, S. K. Kang, G. A. Salvatore, Y. Ma, B. H. Kim, Y. Jiang, J. S. Kim, L. Yan, D. S. Wie, A. Banks, S. J. Oh, X. Feng, Y. Huang, G. Troester, and J. A. Rogers, “Wireless microfluidic systems for programmed, functional transformation of transient electronic devices,” Advanced Functional Materials 25, pp. 5100-5106, Aug. 2015.

E. R. Siuda, J. G. MaCall, R. AI-Hasani, G. Shin, S. I. Park, M. J. Schmidt, S. L. Anderson, W. J. Planer, J. A. Rogers, and M. R. Bruchas, “Optodynamic simulation of b-adrenergic receptor signaling,” Nature Communications, 6:8480, Sep. 2015. DOI: 10.1038/ncomms9480.

J. W. Jeong, J. G. McCall, G. Shin, Y. Zhang, R. AI-Hasani, M. Kim, S. Li, J. Y. Sim, K-I. Jang, Y. Shi, D. Y. Hong, Y. Liu, G. P. Schmiz, L. Xia, Z. He, P. Gamble, W. Z. Ray, Y. Huang, M. R. Bruchas, and J. A. Rogers, “Wireless optofludic system for programmable in vivo pharmacology and optogenetics,” Cell 162, 2015, pp. 1-13, 2015.

C. Dagdeviren, Y. W. Su, P. Joe, R. Yona, Y. H. Liu, Y. S. Kim, Y. A. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. G. Huang, and J. A. Rogers, “Conformable amplified lead zirconate titanate sensors with ehanced piezoelectric response for cutaneous pressure monitoring,” Nature Communications, article no. 4496, Aug. 2014. DOI: 10.1038/ncomms5496.

R. G. C. Fuentes, A. C. Aparicio, E. Alarcon, “Energy buffer dimensioning through energyerlangs in spatio-temporal-correlated energyharvesting-enabled wiressless sensor network,” Emerging and Slected Topics in Circuits and Systems, 4, pp. 301-312, 2014.

Y. Wu and W. B. Liu, “Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks,” Wireless Sensor Systems, vol. 3, pp. 112-118, 2013.

C. Y. Song, Y. Huang, J. W. Zhang, S. Yuan, and P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Transactions on Antenna and Propagation, vol. 63, pp. 3486-349, 2015.

J. I. Moon, I. K. Cho, S. M. Kim, and Y. B. Jung, “Design of efficient rectenna with vertical groundwalls for RF energy harvesting,” Electronics Letters, vol. 49, no. 17, pp. 1050-1052, 2013.

A. Takacs, H. Aubert, L. Despoisse, and S. Fredon, “Microwave energy harvesting for satellite applications,” Electronics Letters, vol. 49, no. 11, pp. 722-724, 2013.

S. Ladan, A. B. Guntupalli, and W. Ke, “A highefficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission,” IEEE Transactions Circuits and Systems I: Regular Papers, vol. 61, no. 12, pp. 3358-3366, 2014.

H. Fu-Jhuan, et al., “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2646-2653, 2011.

Y.-L. Yang, C.-L. Tsai, and C.-L. Yang, “Enhancement of output voltage for novel dental rectennas,” 2012 42nd European Microwave Conference (EuMC), pp. 321-324, 2012.

T. I. Kim, et al., “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science, vol. 340, (6129), pp. 211- 216, 2013.

Downloads

Published

2021-08-18

How to Cite

[1]
Y. . Xu, Y. . Lan, Y. . Qiu, and R. . Xu, “Compact Implantable Rectenna with Light-Emitting Diode for Implantable Wireless Optogenetics”, ACES Journal, vol. 31, no. 06, pp. 712–716, Aug. 2021.

Issue

Section

Articles