Active Metamaterial Transmission Line with Gain in SiGe BiCMOS Technology

Authors

  • C. X. Zhou 1 Ministerial Key Laboratory of JGMT Nanjing University of Science and Technology, Nanjing, 210094, China
  • Yihu Li Terahertz Research Center CAEP, Chendu, 611731, China
  • Y. Z. Xiong Terahertz Research Center CAEP, Chendu, 611731, China
  • W. Wu Ministerial Key Laboratory of JGMT Nanjing University of Science and Technology, Nanjing, 210094, China

Keywords:

Active, CRLH TL, metamaterial, SiGe BiCMOS

Abstract

We report the realization of an active composite right/left-handed (CRLH) metamaterial transmission line (TL) with gain. By employing the transistors in SiGe BiCMOS technology, an active CRLH TL has been realized exhibiting net gain, wideband and flat S-parameter characteristics. Effective electromagnetic parameters of the active CRLH TL, including complex propagation constant ?, effective permittivity ?eff, effective permeability ?eff and index of refraction n are extracted, which reveal the left handed properties of the active CRLH TL. The electric plasma frequency fpe and the magnetic plasma frequency fme are observed in the proposed TL.

Downloads

Download data is not yet available.

References

R. A. Shelby, D. R. Smith, and S. Schulta, “Experimental verification of a negative index refraction,” Science, vol. 292, pp. 77-79, Apr. 2001.

T. Jiang, K. Chang, L. M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett., vol. 107, pp. 205503, Nov. 2011.

A. A. Tavallaee, P. W. C. Hon, Q. S. Chen, T. Itoh, and B. S. Williams, “Active terahertz quantumcascade composite right/left-handed metamaterial,” Appl. Phys. Lett., vol. 102, pp. 021103, Jan. 2013.

A. L. Borja, J. Carbonell, V. E. Boria, and D. Lippens, “Highly selective left-handed transmission line loaded with split ring resonators and wires,” Appl. Phys. Lett., vol. 94, pp. 143503, Apr. 2009.

Y. Yuan, B.-I. Popa, and S. A. Cummer, “Zero loss magnetic metamaterials using powered active unit cells,” Opt. Express, vol. 17, pp. 16135-16143, Aug. 2009.

S. Xiao, V. P. Drachev, and A. V. Kildishev, “Loss-free and active optical negative-index metamaterials,” Nature, vol. 466, pp. 735-736, Aug. 2010.

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley, New York, 2005.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by timedomain,” IEEE Trans. Instrum. Meas., vol. 19, no. 4, pp. 377-382, 1970.

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, vol. 62, pp. 33-36, Jan. 1974.

J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved techniques for determining complex permittivity with the transmission/reflection method,” IEEE. Trans. Microwave Theory Tech., vol. 38, pp. 1096-1103, Aug. 1990.

Downloads

Published

2021-08-18

How to Cite

[1]
C. X. . Zhou, Y. . Li, Y. Z. . Xiong, and W. . Wu, “Active Metamaterial Transmission Line with Gain in SiGe BiCMOS Technology”, ACES Journal, vol. 31, no. 05, pp. 551–554, Aug. 2021.

Issue

Section

Articles