Mode Conversion Caused by Bending in Photonic Subwavelength Waveguides

Authors

  • Y. J. Rodriguez-Viveros Departamento de Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
  • D. Moctezuma-Enriquez Instituto Tecnologico de Hermosillo Av. Tecnológico s/n, Sonora 83170, Mexico
  • P. Castro-Garay Departamento de Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
  • B. Manzanares-Martinez Departamento de Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
  • C. I. Ham-Rodriguez Departamento de Investigacion en Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
  • E. Urrutia-Banuelos Departamento de Investigacion en Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
  • J. Manzanares-Martinez Departamento de Investigacion en Fisica Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico

Keywords:

Bending, mode conversion, subwavelength, waveguide

Abstract

We study the propagation of light in a subwavelength planar waveguide with an angular bend. We observe the mode conversion of a guided wave with a symmetric beam profile impinging into the bending of a waveguide. The guided wave outgoing from the bend is a mixed set of symmetric and asymmetric modes. The amount of mode conversion through the bend is quantified by calculating the Fourier transform of the electric field profile. It is found that the conversion rate is a function of the bending angle.

Downloads

Download data is not yet available.

References

J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1998.

J. P. Goure and I. Verrier, Optical Fibre Devices, CRC Press, New York, 2001.

Optics Communications. Special Issue: Optical Micro/Nanofibers: Challenges and Opportunities, vol. 285, no. 4641, 2012.

J. D. Meindl, “Beyond Moore’s law: the interconnect era,” Computing in Science Engineering, vol. 5, pp. 20-24, 2003.

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley, New York, 2012.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, vol. 386, pp. 143-149, 1997.

X. Guo, Y. Ying, and L. Tong, “Photonic nanowires: from subwavelength waveguides to optical sensors,” Accounts of Chemical Research, vol. 47, pp. 656- 666, 2014.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals, Princeton Press, Princeton, 1995.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” Journal of Physics D: Applied Physics, vol. 45, 433001, 2012.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions”, Science, vol. 311, pp. 189-193, 2006.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Physics Today, vol. 61, pp. 44-50, 2008.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence,” Applied Physics Letters, vol. 93, 113110, 2008.

J. Manzanares-Martinez, C. I. Ham-Rodriguez, D. Moctezuma-Enriquez, and B. Manzanares-Martinez, “Omnidirectional mirror based on Bragg stacks with a periodic gain-loss modulation,” AIP Advances, vol. 4, 017136, 2014.

P. J. Pauzauskie and P. Yang, “Nanowire photonics,” Materials Today, vol. 9, pp. 36-45, 2006.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” Journal of Lightwave Technology, vol. 15, pp. 1020-1025, 1997.

L. Tong, R. Gattass, J. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelengthdiameter silica wires for low-loss optical wave guiding,” Nature, vol. 426, pp. 816-819, 2003.

T. Voss, G. T. Svacha, E. Mazur, S. Mller, C. Ronning, D. Konjhodzic, and F. Marlow, “Highorder waveguide modes in ZnO nanowires,” NanoLetters, vol. 7, pp. 3675-3680, 2007.

D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nature Nanotechnology, vol. 2, pp. 180-184, 2007.

M. Law, D. Sirbuly, J. Johnson, J. Goldberger, R. Saykally, and P. Yang, “Nanoribbon waveguide for subwavelength photonics integration,” Science, vol. 305, pp. 1269-1273, 2004.

D. Powell, “Light flips transistor switch,” Nature, vol. 498, pp. 149-149, 2013.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is -and what is not- an optical isolator,” Nature Photonics, vol. 7, pp. 579-582, 2013.

J. Wang, M. Gudiksen, X. Duan, Y. Cui, and C. Lieber, “Highly polarized photoluminescence and photodetection,” Science, vol. 293, pp. 1455-1457, 2001.

T. Voss, “Waveguiding and optical coupling in ZnO nanowires and tapered silica fibers,” Advances in Solid State Physics, vol. 48, pp. 57-64, 2009.

X. Xing, Y. Yo, S. Li, and X. Huang, “How do spin waves pass through a bend?,” Scientific Reports, vol. 3, 2958, 2013.

Q. Zhang, C.-W. Yuan, and L. Liu, “Theoretical design and analysis for the TE20-TE10 rectangular waveguide mode converters,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, pp. 1018-1025, 2012.

P. Yeh, Optical Waves in Layered Media, Wiley, New York, 1998.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966.

http://phoxonics.com/software

Downloads

Published

2021-08-22

How to Cite

[1]
Y. J. . Rodriguez-Viveros, “Mode Conversion Caused by Bending in Photonic Subwavelength Waveguides”, ACES Journal, vol. 30, no. 12, pp. 1269–1275, Aug. 2021.

Issue

Section

Articles