Effect of Plasma on Electromagnetic Wave Propagation and THz Communications for Reentry Flight

Authors

  • L. Zheng School of Physical Electronics University of Electronic Science and Technology of China, Chengdu, 0086, 610054, China
  • Q. Zhao University of Electronic Science and Technology of China, Chengdu, 0086, 610054, China
  • X. J. Xing School of Physical Electronics University of Electronic Science and Technology of China, Chengdu, 0086, 610054, China

Keywords:

Blackout, EMW propagation, plasma, THz

Abstract

The spacecraft will experience the well-known “blackout” problem when it re-enters into the Earth’s atmosphere, which results in communication failures between the spacecraft and the ground control center. It is important to study the effect of the plasma on electromagnetic wave (EMW) propagation. The properties of EMW propagation in plasma based on theoretical analysis have been studied in this paper, which indicate that communications using terahertz (THz) wave is an alternative method for solving the blackout problem. The properties of 0.22 THz EMW propagation in plasma have been studied experimentally with shock tube, and the experimental results are in good agreement with the theoretical ones. Both the theoretical and experimental results indicate that communications using THz wave is an alternative and effective way to solve the blackout problem.

Downloads

Download data is not yet available.

References

F. H. Mitchell, “Communication-system blackout during reentry of large vehicles,” Proc. IEEE, vol. 55, pp. 619-626, 1967.

J. P. Rybak and R. J. Churchill, “Progress in reentry communications,” IEEE Trans. Aerospace Electron. Syst., vol. 7, pp. 879-894, 1971.

X. J. Zeng, Z. F. Yu, S. Q. Bu, S. Liu, P. Ma, A. H. Shi, and S. C. Liang, “Research on the RCS of hypervelocity model and its plasma sheath,” Acta Aerodyn. Sin., vol. 28, pp. 645-649, 2010.

M. Keidar, M. Kim, and I. D. Boyd, “Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights,” J. Spacecraft Rockets, vol. 45, pp. 445-453, 2008.

J. F. Liu, X. L. Xi, G. B. Wan, and L. L. Wang, “Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method,” IEEE Tran. Plasma Sci., vol. 39, pp. 852-855, 2011.

M. Kim, M. Keidar, and I. D. Boyd, “Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma,” J. Spacecraft Rockets, vol. 45, pp. 1223-1229, 2008.

C. Thoma, D. V. Rose, C. L. Miller, R. E. Clark, and T. P. Hughes, “Electromagnetic wave propagation through an overdense magnetized collisional plasma layer,” J. Appl. Phys., vol. 106, pp. 043301, 2009.

M. Kim, M. Keidar, and I. D. Boyd, “Electrostatic manipulation of a hypersonic plasma layer-images of the two-dimensional sheath,” IEEE Tran. Plasma Sci., vol. 36, pp. 1198-1199, 2008.

C. J. Schexnayder, J. S. Evans, and P. W. Huber, “Comparison of theoretical and experimental electron density for RAM C flights,” NASA, vol. 252, pp. 277-303, 1970.

J. E. Shen, J. Rong, and W. X. Liu, “Progress of terahertz in communication technology,” Infrared Laser Eng., vol. 35, pp. 342-347, 2006.

M. Martl, J. Darmo, D. Dietze, K. Unterrainer, and E. Gomik, “Terahertz waveguide emitter with subwavelength confinement,” J. Appl. Phys., vol. 107, pp. 013110, 2010.

M. Koch, Terahertz Frequency Detection and Identification of Materials and Object, Braunschweig, 2007.

D. M. Vavriv, V. A. Volkov, and V. G. Churmak, “Clinotron tubes: high-power THz sources,” Proceedings of the 37th European Microwave Conference, Kharkov, Ukraine, Oct. 2007.

Y. J. Ding, “Novel approaches to THz sources and detectors at room temperature,” The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Bethlehem, Palestine, Oct. 2005.

C. X. Yuan, Z. X. Zhou, X. L. Xiang, H. G. Sun, and S. Z. Pu, “Propagation of broadband terahertz pulses through a dense-magnetized-collisionalbounded plasma layer,” Phys. Plasmas, vol. 17, pp. 113304, 2010.

C. X. Yuan, Z. X. Zhou, X. L. Xiang, H. G. Sun, H. Wang, M. D. Xing, and Z. J. Luo, “Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma,” Nucl. Instrum. Methods Phys. Res. B, vol. 269, pp. 23-29, 2011.

C. X. Yuan, Z. X. Zhou, J. W. Zhang, X. L. Xiang, F. Yue, and H. G. Sun, “FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab,” IEEE Tran. Plasma Sci., vol. 39, pp. 1577-1584, 2011.

S. B. Liu, T. Zhou, M. L. Liu, and W. Hong, “Wentzel-Kramer-Brillouin and finite-difference timedomain analysis of terahertz band electromagnetic characteristics of target coated with unmagnetized plasma,” J. Syst. Eng. Electron., vol. 19, pp. 15-20, 2008.

Z. Tosun, D. Akbar, and H. Altan, “The interaction of terahertz pulses with dc glow discharge plasma,” 34th International Conference on Infrared, Millimeter, and Terhertz Waves, Busan, Korea, Sep. 2009.

T. S. Hector, R. Norma, and H. S. Paulo, “Electromagnetic properties of a chiral-plasma medium,” Appl. Comput. Electrom., vol. 12, no. 1, pp. 731-442, 1997.

B. Tissafi, F. Aniel, L. Pichon, B. Essakhi, C. Guiffaut, and S. Lepaul, “Comparative study of three wave propagation software programs for the modeling of coupled Maxwell and Boltzmann equations at THz frequency,” Appl. Comput. Electrom., vol. 24, no. 4, pp. 382-390, 2009.

F. Seydou, R. Duraiswami, N. A. Gumerov, and T. Seppanen, “TM electromagnetic scattering form 2D multilayered dielectric bodies-numerical solution,” Appl. Comput. Electrom., vol. 19, no. 2, pp. 100- 107, 2004.

L. Zheng, Q. Zhao, S. Z. Liu, P. Ma, C. Huang, Y. F. Tang, X. L. Chen, X. J. Xing, C. Y. Zhang, and X. G. Luo, “Theoretical and experimental studies of 35 GHz and 96 GHz electromagnetic wave propagation in plasma,” Prog. Electromagn. Res. M, vol. 24, pp. 179-192, 2012.

C. X. Yuan, Z. X. Zhou, and H. G. Sun, “Reflection properties of electromagnetic wave in a bounded plasma slab,” IEEE Tran. Plasma Sci., vol. 38, pp. 3348-3355, 2010.

J. Hilsenrath and M. Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500K to 15000K, Virginia, 1965.

M. Lamnaouer, Numerical Modeling of the Shock Tube Flow Fields Before and During Ignition Delay Time Experiments at Practical Conditions, Florida, 2004.

P. Ma, X. J. Zeng, A. H. Shi, S. Q. Bu, and Z. F. Yu, “Experimental investigation on electromagnetic wave transmission characteristic in the plasma high temperature gas,” J. Exp. Fluid Mechanics, vol. 24, pp. 51-56, 2010.

Y. Chang, Numerical Research on Supersonic/ Hypersonic Plasma Flow and its Electromagnetic Characteristics, Changsha, China, 2009.

Downloads

Published

2021-08-22

How to Cite

[1]
L. . Zheng, Q. . Zhao, and X. J. . Xing, “Effect of Plasma on Electromagnetic Wave Propagation and THz Communications for Reentry Flight”, ACES Journal, vol. 30, no. 11, pp. 1241–1245, Aug. 2021.

Issue

Section

Articles