Space-Frequency Domain Iterative Method for Modes Analysis of Planar Waveguides
Keywords:
Fourier transform, iterative method, planar waveguide, space-frequencyAbstract
We describe a space-frequency domain iterative algorithm to analyze the modes of planar optical waveguides. The one dimensional Maxwell equation was transformed into space-frequency domain by Fourier transform, and became an integral equation which could be solved by an iterative method. For any refractive index profiles, the effective index and mode field distribution are given simultaneously. The numerical result shows that this method is accurate and flexible for planar optical waveguides with any structure.
Downloads
References
J-E. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” SPIE, vol. 6475, pp. 647507, 2007.
L. Ke and E. Y. B. Pun, “Modeling and experiments of packaged Er3+–Yb3+ co-doped glass waveguide amplifiers,” Opt. Comm., vol. 273, no. 2, pp. 413-420, 2007.
S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett., vol. 93, pp. 023306, 2008.
H. Mukundan, J. Z. Kubicek, A. Holt, J. E. Shively, J. S. Martinez, K. Grace, W. K. Grace, and B. I. Swanson, “Planar optical waveguide-based biosensor for the quantitative detection of tumor markers,” Sensor. Actuat. B-Chem., vol. 138, no. 2, pp. 453-460, 2009.
J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express, vol. 15, no. 5, pp. 2307-2314, 2007.
B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express, vol. 17, no. 7, pp. 5075-5082, 2009.
M. Chunsheng and L. Shiyong, Mode Theory of Optical Waveguides (in Chinese), Jilin University Press, Changchun, pp. 130-132, 2007.
S. Shouxian, W. Jingyi, and L. Qiao, “Metal-clad graded-index planar optical waveguides: accurate perturbation analysis,” Opt. Comm., vol. 90, no. 4-6, pp. 238-240, 1992.
L. Qiao and W. Jingyi, “A refined WKB method for planar waveguides with asymmetric graded index profile,” Opt. Comm., vol. 83, no. 1-2, pp. 144-153, 1991.
Z. Anping and S. R. Cvetkovic, “Finite- element analysis of hybrid modes in uniaxial planar waveguides by a simple iterative method,” Opt. Lett., vol. 20, no. 2, pp. 139-141, 1995.
E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol., vol. 17, no. 5, pp. 929-941, 1999.
R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, “Numerical determination of planar waveguide modes using the analyticity of the dispersion relation,” Opt. Lett., vol. 16, no. 17, pp. 1316-1318, 1991.
P. R. Chaudhuri and S. Roy, “Analysis of arbitrary index profile planar optical wave-guides and multilayer nonlinear structures: a simple finite difference algorithm,” Opt. Quant. Electron., vol. 39, pp. 221-237, 2007.
A. A. Stratonnikov, A. P. Bogatov, A. E. Drakin, and F. F. Kamenets, “A semianalytical method of mode determination for a multilayer planar optical waveguide,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. 535-539, 2002.
K. Tsakmakidis, D. Aryal, and O. Hess, “Accurate modal analysis of 3D dielectric waveguides using the nonstandard FDTD method,” 24th Annual Review of Progress in ACES, pp. 956-961, Niagara Falls, Canada, 2008.
T. A. Tamadan, “A search-and-track algorithm for controlling the number of guided modes of planar optical waveguides with arbitrary refractive index profiles,” ACES Journal, vol. 26, no. 1, pp. 45-55, 2011.
C. Zhuangqi, J. Yi, S. Qishun, D. Xiaoming, and C. Yingli, “Exact analytical method for planar optical waveguides with arbitrary index profile,” J. Opt. Soc. Am. A, vol. 16, no. 9, pp. 2209-2212, 1999.