Modification of Vivaldi Antenna for 2-18 GHz UWB Application with Substrate Integration Waveguide Structure and Comb Slots
Keywords:
Substrate integration waveguide, UWB, Vivaldi antennaAbstract
In this paper have been developed two new Vivaldi antenna for UWB application at 2-18 GHz with SIW structure for linear phase center labeled as antenna I and antenna II. The proposed antennas have high gain and directional patterns with symmetric radiation pattern in phi=0 and phi=90 planes. The SIW structure is combined with Vivaldi antenna in order to improve the gain, pattern and phase center linearity. Similarly, for gain improvement at lower frequencies for SIW antenna and with less divergence in the gain, slots with comb models are proposed. The prototype antenna is printed and fabricated on Roger 4003 with ?r = 3.45 and thickness of 1.5 mm. The antenna’s total dimension is 120 mm × 160 mm. The simulation and experimental VSWR and the gain of antenna I and II is less than 2.5 and 6 dBi - 15 dBi, and 2.4 for 2.17-18 GHz and 8.2 dBi - 15.5 dBi in the entire frequency range of 2-18 GHz respectively. Likewise, the Vivaldi antenna phase center is investigated and finally the linear characteristic of the antenna phase center is presented with linear variation.
Downloads
References
F. B. Zarrabi, A. M. Shire, M. Rahimi, and N. P. Gandji, “UltraǦwideband tapered patch antenna with fractal slots for dual notch application,” Microwave Opt. Technol. Letts., vol. 56, pp. 1344-1348, 2014.
M. H. B. Ucar and Y. E. Erdemli, “Triple-band microstripline-fed printed wide-slot antenna for WiMAX/WLAN operations,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 29, no. 10, pp. 793-800, 2014.
M. H. B. Ucar, A. Sondas, and Y. E. Erdemli, “Dual-band loop-loaded printed dipole antenna with a wideband microstrip balun structure,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 27, no. 6, pp. 458-465, Jun. 2012.
C. Van Niekerk, E. Zastrow, S. C. Hagness, and J. T. Bernhard, “UWB radar target sensing and imaging for granular materials research applications,” IEEE Int. Symp. Antennas Propagat. (APSURSI), 2010 IEEE, pp. 1-4, 2010.
A. M. Abbosh, “Strain imaging of breast using ultra-wideband pulse,” In Microwave Conference Proceedings (APMC), Asia-Pacific, pp. 1376- 1379, 2010.
X. Liu, X. Xiao, Z. Fan, and J. Yu, “ Study on the imaging resolution of ultra-wideband microwave imaging for breast cancer detection,” 3rd International Conference on Bioinformatics and Biomedical Engineering, IEEE, pp. 1-4, 2009.
M. Rahimi, R. A. Sadeghzadeh, F. B. Zarrabi, and Z. Mansouri, “Band-notched UWB monopole antenna design with novel feed for taper rectangular radiating patch,” Prog. Electromagn. Res. C, vol. 47, pp. 147-155, 2014.
A. M. Abbosh and M. E. Bialkowski, “Design of ultrawideband planar monopole antennas of circular and elliptical shape,” IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 17-23, 2008.
D. S. Woo, Y. G. Kim, K. W. Kim, and Y. K. Cho, “Design of quasiǦYagi antennas using an ultraǦwideband balun,” Microwave Opt. Technol. Letts., vol. 50, no. 8, pp. 2068-2071, 2008. [10] A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Wideband microstripǦfed printed bowǦtie antenna for phasedǦarray systems,” Microwave Opt. Technol. Letts., vol. 43, no. 2, pp. 123-126, 2004.
J. Ou Yang, S. Bo, J. Zhang, and F. Yang, “A low-profile unidirectional cavity-backed logperiodic slot antenna,” Prog. Electromagn. Res., vol. 119, pp. 423-433, 2011.
A. Abu Bakar, D. Ireland, A. M. Abbosh, and Y. Wang, “Experimental assessment of microwave diagnostic tool for ultra-wideband breast cancer detection,” Prog. Electromagn. Res. M, vol. 23, pp. 109-121, 2012.
B. J. Mohammed, A. M. Abbosh, D. Ireland, and M. E. Bialkowski, “Compact wideband antenna for microwave imaging of brain,” Prog. Electromagn. Res. C, vol. 27, pp. 27-39, 2012.
S. Nikolaou, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, “Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1663-1669, 2006.
K. Kota and L. Shafai, “Gain and radiation pattern enhancement of balanced antipodal Vivaldi antenna,” Electron. Lett., vol. 47, no. 5, pp. 303- 304, 2011.
Q. Wu, B.-S. Jin, L. Bian, Y.-M. Wu, and L.-W. Li, “An approach to the determination of the phase center of Vivaldi-based UWB antenna,” IEEE Int. Symp. Antennas Propagat., pp. 563- 566, 2006.
A. Elsherbini, C. Zhang, S. Lin, M. Kuhn, A. Kamel, A. E. Fathy, and H. Elhennawy, “UWB antipodal vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns, and minimal phase center variations,” IEEE Int. Symp. Antennas Propagat., pp. 1973- 1976, 2007.
S. Chamaani, S. Mirtaheri, and M. S Abrishamian, “Improvement of time and frequency domain performance of antipodal vivaldi antenna using multi-objective particle swarm optimization,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1738-1742, 2011.
N. Hamzah and K. A. Othman, “Designing Vivaldi antenna with various sizes using CST software,” In Proceedings of the World Congress on Engineering, vol. 2, pp. 6-8, 2011.
B. Zhou, H. Li, X. Zou, and T.-J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagn. Res., vol. 120, pp. 235-247, 2011.
P. Wang, H. Zhang, G. Wen, and Y. Sun, “Design of modified 6-18 GHz balanced antipodal Vivaldi antenna,” Prog. Electromagn. Res. C, vol. 25, pp. 271-285, 2012.
A. R. H. Alhawari, A. Ismail, M. A. Mahdi, and R. S. A. Raja Abdullah, “Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial,” Prog. Electromagn. Res. C, vol. 27, pp. 265-279, 2012.