Fast Design of Jerusalem-Cross Parameters by Equivalent Circuit Model and Least-Square Curve Fitting Technique

Authors

  • Hsing-Yi Chen Department of Communications Engineering Yuan Ze University, Chung-Li, Taoyuan, 32003, Taiwan
  • Tsung-Han Lin Department of Communications Engineering Yuan Ze University, Chung-Li, Taoyuan, 32003, Taiwan
  • Pei-Kuen Li Department of Communications Engineering Yuan Ze University, Chung-Li, Taoyuan, 32003, Taiwan

Keywords:

Dual-band Jerusalem-cross element, least-square curve fitting, reflection, transmission

Abstract

Based on an equivalent circuit model, the least-square curve fitting technique is proposed to quickly design optimum values of geometrical parameters of a dual-band Jerusalem-cross element for arbitrarily specifying any dual resonant frequencies. The validity of the least-square curve fitting technique is checked by comparing geometrical parameters and dual resonant frequencies of six Jerusalem-cross grids obtained by the proposed technique with those obtained by the improved empirical model and measurement method. Design of dual-band Jerusalem-cross slots is also conducted by the proposed technique. Simulation results of reflection and dual resonant frequencies of Jerusalem-cross slots designed by the proposed technique are also validated by measurement data.

Downloads

Download data is not yet available.

References

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys., vol. 7, no. 1, pp. 37-50, 1967.

B. A. Munk, R. J. Luebbers, and R. D. Fulton, “Transmission through a 2-layer array of loaded slots,” IEEE Trans. Antennas Propag., vol. AP22, no. 6, pp. 804-809, Nov. 1974.

F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691-2703, Oct. 2003.

Y. Zhang, J. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2704-2712, Oct. 2003.

X. L. Bao, G. Ruvio, M. J. Ammann, and M. John, “A novel GPS patch antenna on a fractal hiimpedance surface substrate,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 323-326, 2006.

H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.

R. F. J. Broas, D. F. Sievenpiper, and E. Yablonovitch, “A high-impedance ground plane applied to a cellphone handset geometry,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1262-1265, Jul. 2001.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile highgain planar antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209-215, Jan. 2005.

H. Y. Chen and Y. Tao, “Bandwidth enhancement of a U-slot patch antenna using dual-band frequency selective surface with double rectangular ring elements,” Microw. Opt. Technol. Lett., vol. 53, no. 7, pp. 1547-1553, Jul. 2011.

H. Y. Chen and Y. Tao, “Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem cross elements,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3482-3486, Sep. 2011.

M. Philippakis, C. Martel, D. Kemp, M. C. S. M. R. Allan, S. Appleton, W. Damerell, C. Burton, and E. A. Parker, Application of FSS Structures to Selectively Control the Propagation of Signals into and out of Buildings, ERA Technology, Leatherhead, Surrey, UK, Tech. Rep., 2004.

M. Gustafsson, A. Karlsson, A. P. P. Rebelo, and B. Widenberg, “Design of frequency selective windows for improved indoor outdoor communication,” IEEE Trans. Antennas Propag., vol. 54, no. 6, pp. 1897-1900, Jun. 2006.

G. I. Kiani, L. G. Osslon, A. Karlsson, and K. P. Esselle, “Transmission of infrared and visible wavelengths through energy-saving glass due to etching of frequency-selective surfaces,” IET Microw. Antennas Propag., vol. 4, pp. 955-961, 2010.

G. I. Kiani, L. G. Osslon, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in building,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 520-525, Feb. 2011.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 8-17, Jan. 2005.

J. McVay, N. Engheta, and A. Hoorfar, “High impedance metamaterial surfaces using Hilbertcurve inclusions,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 130-132, 2004.

J. Bell and M. Iskander, “A low-profile archimedean spiral antenna using an EBG ground plane,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 223-226, 2004.

R. Mittra, C. H Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces - a review,” Pro. IEEE, vol. 76, no. 12, pp. 1593-1615, Dec. 1988.

F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1509-1514, Aug. 1999.

K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239-1245, May 2007.

T. Kamgaing and O. M. Ramahi, “Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 479-489, Aug. 2005.

T. K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag., vol. 42, no. 12, pp. 1659- 1663, Dec. 1994.

H. L. Liu, K. L. Ford, and R. J. Langley, “Design methodology for a miniaturized frequency selective surface using lumped reactive components,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2732-2738, Sep. 2009.

R. R. Xu, H. C. Zhao, Z. Y. Zong, and W. Wu, “Dual-band capacitive loaded frequency selective surfaces with close band spacing,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, Dec. 2008.

G. I. Kiani, K. L. Ford, K. P. Esselle, A. R. Weily, C. Panagamuwa, and J. C. Batchelor, “Single-layer bandpass active frequency selective surface,” Microw. Opt. Technol. Lett., vol. 50, no. 8, pp. 2149-2151, Aug. 2008.

G. I. Kiani, K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, “Oblique incidence performance of a novel frequency selective surface absorber,” IEEE Trans. Antennas Propag., vol. 55, no. 10, pp. 2931-2934, Oct. 2007.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 186- 193, Jan. 2007.

A. K. Zadeh and A. Karlsson, “Capacitive circuit method for fast and efficient design of wideband radar absorbers,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2307-2314, Aug. 2009.

A. Itou, O. Hashimoto, H. Yokokawa, and K. Sumi, “A fundamental study of a thin wave absorber using FSS technology,” Electron. Commun. Jpn., vol. 87, pt. 1, pp. 77-86, 2004.

A. Itou, H. Ebara, H. Nakajima, K. Wada, and O. Hashimoto, “An experimental study of a wave absorber using a frequency-selective surface,” Microw. Opt. Technol. Lett., vol. 28, pp. 321-323, 2001.

G. I. Kiani, A. R. Weily, and K. P. Esselle, “A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 378-380, 2006.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Hoboken/Piscataway, NJ, Wiley-IEEE Press, 2006.

R. Baggen, M. Martinez-Vazquez, J. Leiss, and S. Holzwarth, “Comparison of EBG substrates with and without vias for GALILEO/GPS applications,” In Proc. EuCAP 2007, 2nd European Conf. Antennas Propag., Edinburgh, UK, 2007.

Y. Fan, B. L. Ooi, H. D. Hriston, and M. S. Leong, “Compound diffractive lens consisting of Fresnel zone plate and frequency selective screen,” IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1842- 1847, Jun. 2010.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary-condition in the finitedifference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag., vol. 42, no. 9, pp. 1317-1324, Sep. 1994.

J. L. Volakis, T. Ozdemir, and J. gong, “Hybrid finite-element methodologies for antennas and scattering,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 493-507, Mar. 1997.

T. W. Leonard and J. W. Cofer, “A new equivalent circuit representation for the Jerusalem cross,” in Proc. IEE Int. Conf. Antennas and Propagation, London, England, vol. 2, pp. 65-69, 1978.

R. J. Langley and A. J. Drinkwater, “Improved empirical model for the Jersalem cross,” IEE Proc., vol. 129, Pt. H., no. 1, pp. 1-6, Feb. 1982.

M. Hosseinipanah and Q Wu, “Equivalent circuit model for designing of Jerusalem cross-based artificial magnetic conductors,” Radioeng., vol. 18, no. 4, pp. 544-550, Dec. 2009.

L. H. Lafara, Computer Method for Science and Engineering, New York: Hayden, pp. 148-157, 1973.

S. H. Sun and B. Z. Wang, “Parameter optimization based on GA and HFSS,” J. Electron. Sci. Technol. China, vol. 3, no. 1, pp. 45-47, Mar. 2005.

Downloads

Published

2021-08-22

How to Cite

[1]
H.-Y. . Chen, T.-H. . Lin, and P.-K. . Li, “Fast Design of Jerusalem-Cross Parameters by Equivalent Circuit Model and Least-Square Curve Fitting Technique”, ACES Journal, vol. 30, no. 07, pp. 717–730, Aug. 2021.

Issue

Section

General Submission