Ultra-Compact Polarization Splitter Based on Silica Liquid Crystal Photonic Crystal Fiber Coupler

Authors

  • Rasha A. Hussein Department of Engineering Applications of Lasers National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt , Department of Physics, Faculty of Science Al-Muthana University, Muthana, Iraq
  • Mohamed F. O. Hameed Centre of Photonics and Smart Materials Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, Giza, Egypt , Department of Mathematics and Engineering Physics, Faculty of Engineering Mansoura University, Mansoura, 35516, Egypt
  • Salah S. Obayya Centre of Photonics and Smart Materials Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, Giza, Egypt

Keywords:

Beam propagation method, finite difference method, photonic crystal fibers, polarization splitter

Abstract

An ultra-compact polarization splitter based on dual core nematic liquid crystal silica photonic crystal fiber (NLC-PCF) is proposed and analyzed. The refractive index difference between the NLC and silica material guaranties the index guiding through the reported splitter. The dual core NLC-PCF has strong polarization dependence due to the birefringence between the two polarized modes. The coupling characteristics of the proposed design are studied thoroughly using full vectorial fine difference method (FV-FDM) and the propagation analysis is performed by full vectorial finite difference beam propagation method (FVFD-BPM). The numerical results reveal that the reported splitter has short device length of 482 µm with low crosstalk better than -20 dB with wide bandwidths of 31.5 nm and 19 nm for the quasi TE and quasi TM modes, respectively. The compact coupling lengths as well as the low crosstalks over reasonable bandwidths are the main advantages of the reported dual core NLC-PCF.

Downloads

Download data is not yet available.

References

K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express, vol. 16, no. 7, pp. 4631-4638, 2008.

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett, vol. 22, no. 13, pp. 961-963, 1997.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, no. 6, 2001.

F. Shi, Y. Wu, M. Li, Y. Zhao, and L. Zhao, “Highly birefringent two-mode photonic crystal fibers with near-zero flattened dispersion,” IEEE Photonics Journal, vol. 3, no. 6, 2011.

M. Napierała, T. Nasiłowski, E. Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fiber with low bending loss,” Opt. Express, vol. 18, no. 15, pp. 15408-15418, 2010.

G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technology Letters, vol. 20, no. 8, 2008.

M. F. O. Hameed, S. S. A. Obayya, and H. A. ElMikati, “Highly nonlinear birefringent soft glass photonic crystal fiber with liquid crystal core,” IEEE Photonics Technology Letters, vol. 23 no. 20, pp. 1478-1480, 2011.

M. F. O. Hameed and S. S. A. Obayya, “Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber,” IEEE J. Quantum Electron., vol. 47, no. 10, pp. 1283-1290, 2011.

V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, V. A. Melnikov, and E. V. Astrova, “Electrotunable in-plane one-dimensional photonic structure based on silicon and liquid crystal,” Appl. Phys. Lett., vol. 90, 011908, 2007.

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Resonancerelated coupling of symmetric dual-core hybrid photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 525-527, 2009.

M. F. O. Hameed, S. S. A. Obayya, K. Al Begain, A. M. Nasr, and M. I. Abo ElMaaty, “Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fiber coupler,” IET Optoelectronics, vol. 3, no. 6, pp. 264-273, 2009.

M. F. O. Hameed, S. S. A. Obayya, and R. J. Wiltshire, “Multiplexer–demultiplexer based on nematic liquid crystal photonic crystal fiber coupler,” J. Opt. Quantum Electron., vol. 41, no. 4, pp. 315-326, 2009.

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express, vol. 11, no. 9, pp. 1015-1020, 2003.

N. J. Florous, K. Saitoh, and M. Koshiba, “Synthesis of polarization independent splitters based on highly birefringent dual-core photonic crystal fiber platforms,” IEEE Photon. Technol. Lett., vol. 18, no. 11, pp. 1231-1233, 2006.

M. F. O. Hameed and S. S. A. Obayya, “Polarization splitter based on soft glass nematic liquid crystal photonic crystal fiber,” IEEE Photon. J., vol. 1, no. 6, pp. 265-276, 2009.

P. Li and J. Zhao, “Polarization-dependent coupling in gold-filled dual-core photonic crystal fibers,” Opt. Express, vol. 21, no. 5, pp. 5232- 5238, 2013.

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol., vol. 26, no. 11, pp. 1423-1431, 2008.

W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Optical Tech. Letters, vol. 7, pp. 590-604, 1994.

S. Obayya, Computational Photonics, John Wiley & Sons, 2011.

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microwave and Opt. Technol. Lett., vol. 15, no. 6, pp. 363-369, 1997.

M. Rajarajan, S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikali, “Characterization of low-loss waveguide bends with offset-optimization for compact photonic integrated circuits,” Optoelectronics, IEE Proceedings, vol. 147, no. 6, pp. 382-388, 2000.

W. P. Huang and C. L. Xu, “Simulation of threedimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, no. 10, pp. 2639-2649, 1993.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, pp. 1547-1549, 1996.

A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, “1.5µm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1km-1,” The 30th Eur. Conf. Optical Commun. Conf., th. 3.3.6, 2004.

H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Optical Materials Express, vol. 1, pp. 234- 242, 2011.

D. M. Chow, S. R. Sandoghchi, and F. R. M. Adikan, “Fabrication of photonic crystal fibers,” IEEE 3rd International Conference on Photonics, 227-230, 2012.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol., vol. 27, no. 11, pp. 1617- 1630, 2009.

L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express, vol. 13, no. 22, pp. 9014-9022, 2005.

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182-5184, 2004.

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express, vol. 18, no. 17, pp. 18056-18060, 2010.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, no. 4, 2005.

G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, “Polarization dependent guiding in liquid crystal filled photonic crystal fibers,” Opt. Commun., vol. 281, no. 6, pp. 1598-1606, 2008.

S. S. A. Obayya, B. M. A. Rahman, and H. A. ElMikati, “New full-vectorial numerically efficient propagation algorithm based on the finite element method,” J. Lightwave Technol., vol. 18, no. 3, 2000.

M. Y. Chen and J. Zhou, “Polarizationindependent splitter based on all-solid silica-based photonic-crystal fibers,” J. Lightwave Technol., vol. 24, no. 12, pp. 5082-5086, 2006.

N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express, vol. 13, no. 19, pp. 7365-7373, 2005.

C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am., vol. 64, pp. 1424-1432, 1974.

M. Green and S. J. Madden, “Low loss nematic liquid crystal cored fiber waveguides,” Appl. Opt., vol. 28, pp. 5202-5203, 1989.

Downloads

Published

2021-08-22

How to Cite

[1]
R. A. . Hussein, . M. F. O. . Hameed, and S. S. . Obayya, “Ultra-Compact Polarization Splitter Based on Silica Liquid Crystal Photonic Crystal Fiber Coupler”, ACES Journal, vol. 30, no. 06, pp. 599–607, Aug. 2021.

Issue

Section

Articles