60 GHz Circular Patch-Fed High Gain Transparent Lens Antenna

Authors

  • Z. Briqech Electrical and Computer Engineering Department Concordia University, 1455 de Maisonneuve West, EV005.127, Montréal, Québec, H3G 1M8, Canada
  • A. R. Sebak Electrical and Computer Engineering Department Concordia University, 1455 de Maisonneuve West, EV005.127, Montréal, Québec, H3G 1M8, Canada
  • T. Denidni Institut National De La Recherche Scientifique (INRS) Place Bonaventure, 900 De la Gauchetière Ouest, Niveau C, Montréal, Québec, H5A 1C6, Canada

Keywords:

Dielectric lens, high gain, millimeter-wave antenna, unlicensed 60 GHz band

Abstract

A high gain, low cost and easy to fabricate millimeter-wave (MMW) antenna is presented. To focus the radiation into a very thin main beam, a concept based on employing a cylindrical air cavity with a convex front-end linking a microstrip patch radiator and a transparent dielectric lens is introduced. This principle is applied to enhance the coupling between the patch antenna and dielectric lens at 60 GHz. The design shows very directive and stable radiation patterns in both the E and H-planes. The proposed antenna exhibits a measured gain of 20 dB over the ISMband, as well as high radiation efficiency (greater than 90%). The performance of the proposed antenna makes it a promising solution for various MMW applications, including short distance wireless communications and MMW imaging.

Downloads

Download data is not yet available.

References

E. E. Altshuler and R. A. Meir, “A comparison of experimental and theoretical values of atmospheric absorption at the longer millimeter wavelengths,” IEEE Trans. Antennas Propagat., vol. AP-36, no. 10, pp. 1471-1480, Oct. 1988.

A. Perron, T. A. Denidni, and A. R. Sebak, “High-gain hybrid dielectric resonator antenna for millimeter-wave applications: design and implementation,” IEEE Trans. Antennas Propagat., vol. 57, no. 10, pp. 2882, 2009.

E. Ayman and A. Sebak, “High-gain hybrid microstrip/conical horn antenna for MMW applications,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 129-132, 2012.

C. Karnfelt, P. Hallbjorner, H. Zirath, and A. Alping, “High gain active microstrip antenna for 60-GHz WLAN/WPAN applications,” IEEE Trans. Microw. Theory Tech., vol. 54 (6), pp. 2593-2603, 2006.

X. Wu, G. V. Eleftheriades, and T. E. van Deventer-Perkins, “Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 431- 441, 2001.

Y. Larry, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4.3, pp. 39-50, 2003.

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeterwave technology for automotive radar sensors in the 77 GHz frequency band,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 845- 860, 2012.

T. H. Büttgenbach, “An improved solution for integrated array optics in quasioptical mm and submm receivers: the hybrid antenna,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1750-1761, 1993.

D. Lemaire, C. A. Fernandes, P. Sobieski, and A. Barbosa, “A method to overcome the limitations of G.O. in axis-symmetric dielectric lens shaping,” Int. J. Infrared and MMW, vol. 17, no. 8, pp. 1996.

H. Kao-Cheng. “Millimeter wave lens antennas,” Modern Lens Antennas for Communications Engineering, pp. 113-146, 2013.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in Vband,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2513-2523, 2011.

A Henderson, A. E. England, and J. R. James, “New low-loss millimeter wave hybrid microstrip antenna array,” Eleventh European Microwave Conference, Amsterdam, The Netherlands, 1981.

M. Al Henawy and M. Schneider, “Planar antenna arrays at 60 GHz realized on a new thermoplastic polymer substrate,” Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1-5, 2010.

L. Mall and R. B.Waterhouse, “Millimeterwave proximity-coupled microstrip antenna on an extended hemispherical dielectric lens,” IEEE Trans. Antennas Propagat., vol. 49, no. 12, pp. 1738-1749, 2001.

N. T. Nguyen, A. Rolland, A. V. Boriskin, G. Valerio, L. LeCoq, and R. Sauleau, “Size and weight reduction of integrated lens antennas using a cylindrical air cavity,” IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5993- 5998, 2012.

W. J. Lamb, “Miscellaneous data on materials for millimeter and submillimetre optics,” Int. J. Infrared Millimeter Waves, vol. 17, no. 12, 1996.

R. B. Marks, et al., “Characteristic impedance determination using propagation constant measurement,” IEEE Microwave Guided Wave Let., vol. 1, pp. 141-143, 1991.

E. Vilar and K. W. Wan, “Narrow and wide band estimates of field strength for indoor communications in the millimetre band,” Electronics Division Colloquium on Radiocommunications in the Range 30-60 GHz, pp. 5/1-5/8, Jan. 17, 1991.

I. Ben Mabrouk, J. Hautcoeur, L. Talbi, M. Nedil, and K. Hettak, “Feasibility of a millimeter-wave MIMO system for short-range wireless communications in an underground gold mine,” IEEE Trans. Antennas Propag., vol. 61 (8), pp. 4296-4305, 2013.

H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, “Wideband low-loss linear and circular polarization transmit-arrays in V band,” IEEE Trans. Antennas Propag., vol. 59, no. 7, pp. 2513-2523, 2011.

S. Raman and G. M. Rebeiz, “Single and dual polarized millimeter wave slot ring antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 11, pp. 1438-1444, Nov. 1996.

T. H. Büttgenbach, “An improved solution for integrated array optics in quasioptical mm and submm receivers: the hybrid antenna,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1750-1761, Oct. 1993.

J. J. Lee, Lens Antennas, Microwave Passive and Antenna Components, in Handbook of Microwave and Optical Components, K. Chang Ed., New York: Wiley, vol. 1, ch. 11.2, pp. 595- 625, 1989.

Downloads

Published

2021-08-22

How to Cite

[1]
Z. . Briqech, A. R. . Sebak, and T. . Denidni, “60 GHz Circular Patch-Fed High Gain Transparent Lens Antenna”, ACES Journal, vol. 30, no. 05, pp. 469–477, Aug. 2021.

Issue

Section

General Submission