Liquid Crystal-Based Dielectric-Loaded Plasmonic Ring Resonator Filter

Authors

  • Seyed Mohammad Alavi Electronic & Communication Department Imam Hossein Comprehensive University, Tehran, Iran
  • Hamed Armand Department of Electrical and Computer Engineering K. N. Toosi University of Technology, Shariati Street, Tehran, Iran

Keywords:

FDTD, liquid crystal, surface plasmons polaritons

Abstract

A new tunable plasmonic filter based on liquid crystal dielectric loaded plasmonic waveguide is proposed and studied. The transmission spectrum can be controlled easily by applying a constant external electric field to the plasmonic filter. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons (SPPs) in the waveguide and the electro-optical effect of liquid crystals. Our numerical simulations with finitedifference time-domain (FDTD) technique reveal that a large tuning range of the transmission spectrum can be achieved. Both the electrical switching and optical properties of the proposed structure are investigated in the context of designing an optical switch. The special feature of the proposed structure gives it an opportunity to be used as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes.

Downloads

Download data is not yet available.

References

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824-830, 2003.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667-669, 1998.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev., vol. 182, no. 2, pp. 539-554, 1969.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B, vol. 44, no. 24, pp. 13556-13572, 1991.

J. J. Burke and G. I. Stegeman, “Surfacepolariton-like waves guided by thin, lossy metal films,” Phys. Rev. B, vol. 33, no. 8, pp. 5186- 5201, 1986.

G. Veronis and S. Fana, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, pp. (131102) 1-3, 2005.

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express, vol. 13, no. 24, pp. 9652-9659, 2005.

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express, vol. 17, pp. 19033-19040, 2009.

Z. Han, L. Liu, and Erik Forsberg, “Ultracompact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun., vol. 259, no. 2, pp. 690-695, 2006.

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express, vol. 13, no. 26, pp. 10795-10800, 2005.

Z. Kang and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express, vol. 16, no. 11, pp. 7680-7685, 2008.

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express, vol. 14, no. 7, pp. 2932-2937, 2006.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett., vol. 90, no. 18, pp. (181102) 1-3, 2007.

Z. Han, V. Van, W. N. Herman, and P.-T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express, vol. 17, no. 15, pp. 12678-12684, 2009.

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express, vol. 17, no. 26, pp. 24096-24101, 2009.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, vol. 440, no. 7083, pp. 508-511, 2006.

X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Express, vol. 33, no. 23, pp. 2874- 2876, 2008.

J. Tao, X. G. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” JOSA B, vol. 27, no. 2, pp. 323-327, 2010.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett., vol. 87, no. 1, pp. (013107) 1-3, 2005.

A. Hosseini and Y. Massoud, “A low-loss metalinsulator-metal plasmonic bragg reflector,” Opt. Express, vol. 14, no. 23, pp. 11318-11323, 2006.

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express, vol. 16, no. 7, pp. 4888-4894, 2008.

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-gratingbased MIM waveguide,” Opt. Express, vol. 17, no. 16, pp. 13727-13736, 2009.

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett., vol. 37, no. 11, pp. 1895- 1897, 2012.

J. Wang, S. Liu, and A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express, vol. 20, no 11, pp. 12119-12126, 2012.

J. Gu, R. Singh, A. K. Azad, J. Han, A. J. Taylor, J. F. O’Hara, and W. Zhang, “An active hybrid plasmonic metamaterial,” Opt. Mat. Express, vol. 2, no. 1, pp. 31-37, 2012.

R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett., vol. 8, no. 5, pp. 1506-1510, 2008.

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express, vol. 20, no. 10, pp. 11487-11495, 2012.

C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express, vol. 20, no. 7, pp. 7771-7776, 2012.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express, vol. 20, no. 8, pp. 8700-8709, 2012.

M. K. Chen, Y. C. Chang, C. E. Yang, Y. Guo, J. Mazurowski, S. Yin, P. Ruffin, C. Brantley, E. Edwards, and C. Luo, “Tunable terahertz plasmonic lenses based on semiconductor microslits,” Micro. and Opt. Tech. Lett., vol. 52, no. 4, pp. 979-981, 2010.

M. A. Vincenti, A. D’Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant subwavelength slits filled with a nonlinear material,” JOSA B, vol. 26, no. 2, pp. 301-307, 2009.

P. Li, T. Sasaki, L. F. Pan, and K. Hane, “Combdrive tracking and focusing lens actuators integrated on a silicon-on-insulator wafer,” Opt. Express, vol. 20, no. 1, pp. 627-634, 2012.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquidcrystal optical phased array,” J. of Appl. Phys., vol. 98, no. 7, pp. (073101) 1-8, 2005.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gomez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surfaceplasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett., vol. 100, no. 12, pp. (123901) 1-8, 2008.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett., vol. 84, no. 8, pp. 1416-1418, 2004.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A singlephoton transistor using nanoscale surface plasmons,” Nat. Phys., vol. 3, no. 11, pp. 807-812, 2007.

J. G. Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B, Condens. Matter Mater. Phys., vol. 74, no. 24, pp. 245324-6, 2006.

I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett., vol. 94, no. 5, pp. 57401-57403, 2005.

J. A. Porto, L. Martin-Moreno, and F. J. GarciaVidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B, vol. 70, no. 8, pp. 081402-1-081402-4, 2004.

S. Yue, Z. Li, J. Chen, and Q. Gong, “Ultrasmall and ultrafast all-optical modulation based on a plasmonic lens,” Appl. Phys. Lett., vol. 98, no. 16, 161108, 2011.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett., vol. 5, no. 10, pp. 1978-1981, 2005.

M. BahramiPanah, S. A. Mirtaheri, and M. S. Abrishamian, “Electrical beam steering with metal-anisotropic-metal structure,” Opt. Lett., vol. 37, no. 4, pp. 1-3, 2012.

A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys., vol. 110, no. 9, pp. 093102-1- 093102-9, 2011.

M. Dridi and A. Vial, “FDTD modeling of gold nanoparticles in a nematic liquid crystal: quantitative and qualitative analysis of the spectral tenability,” J. Phys. Chem. C, vol. 114, no. 21, pp. 9541-9545, 2010.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett, vol. 87, 131102, 2005.

Downloads

Published

2021-08-24

How to Cite

[1]
S. M. . Alavi and H. . Armand, “Liquid Crystal-Based Dielectric-Loaded Plasmonic Ring Resonator Filter”, ACES Journal, vol. 30, no. 02, pp. 245–254, Aug. 2021.

Issue

Section

General Submission