Active Metamaterial Incorporating Gain Device/Medium: A Review

Authors

  • Qi Tang Department of Electrical Engineering University of Arizona, Tucson, AZ 85721, USA
  • Hao Xin Department of Electrical Engineering, Department of Physics University of Arizona, Tucson, AZ 85721, USA

Keywords:

Active metamaterials, gain, negative index

Abstract

Metamaterials intrigue many exciting applications in the broad electromagnetic spectrum ranging from microwave to optics. However, many of the envisaged applications still remain in theory, largely because of the intrinsic loss and dispersion associated with passive metamaterials. Incorporating active devices or media into conventional passive metamaterial structures for loss compensation, as well as dispersion control, is very attractive and may finally enable many desired applications. In addition, because of the added design degree of freedom in active metamaterials, new and rich physical phenomena and insights can be discovered. In this paper, we review the recent progress in the realm of active, gain-assisted metamaterials. Physical limitations on loss and bandwidth of metamaterials are firstly discussed. Recent experimental efforts in transmission-line and volumetric metamaterials with net gain in the microwave and optical regime are then examined. The idea of utilizing non-Foster active devices to reduce the dispersion and achieve broad bandwidth is also presented. Finally, one of the important issues of active metamaterial design, stability, is briefly discussed.

Downloads

Download data is not yet available.

References

R. W. Ziolkowski and N. Engheta, “Metamaterial special issue introduction,” IEEE Trans. Antennas and Propag., 51, pp. 2546, October 2003.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, 10, 4, pp. 509- 514, 1968.

R. A. Shelby, D. R. Smith, and S. Schultz “Experimental verification of a negative index of refraction,” Science, 292, pp. 77, April 2001.

A. Alu, et al., “Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications,” IEEE Antennas Propag. Mag., 49, pp. 23, 2007.

S. Enoch, “A metamaterial for direct emission,” Phys. Rev. Lett., 76, pp. 213902, November 2002.

D. Schurig, et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, 314, pp. 977, November 2006.

A. K. Iyer and G. V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves,” IEEE MTT-S IMS Digest, 2, pp. 412, 2002.

C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line,” IEEE Antenna and Propagation Symp., vol. 2, pp. 415, 2002.

A. A. Oliner, “A periodic-structure negativerefractive-index medium without resonant elements,” IEEE Antenna and Propagation Symp., pp. 41, 2002.

C. Caloz and T. Itoh, “Metamaterials for highfrequency electronics,” Proceedings of IEEE, 93, pp. 1744, October 2005.

G. V. Eleftheriades, “Enabling RF/microwave devices using negative-refractive-index transmission line (NRI-TL) metamaterials,” IEEE Antennas Prop. Mag., 49, pp. 34, April 2007.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E, vol. 72, no. 1, p. 016623, July 2005.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780-2, June 2006.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977- 80, November 2006.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3966- 3969, October 2000.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Subdiffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534-7, April 2005.

A. V Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater., vol. 8, no. 11, pp. 867-71, November 2009.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett., vol. 10, no. 4, pp. 1103-7, April 2010.

R. W. Ziolkowski and A. D. Kipple, “Application of double negative materials to increase the power radiated by electrically small antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2626- 2640, October 2003.

S. Enoch, “A metamaterial for direct emission,” Phys. Rev. Lett., 76, pp. 213902, November 2002.

G. Lovat, et al., “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag., 54, pp. 1017, 2006.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys., vol. 92, no. 10, p. 5930, October 2002.

J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B: Condensed Matter, vol. 338, pp. 329-332, 2003.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, “Electrodynamics of continuous media,” Butterworth-Heinemann, 1979.

J. D. Jackson, “Classical electrodynamics third edition,” Wiley, 1998.

J. Skaar and K. Seip, “Bounds for the refractive indices of metamaterials,” J. Phys. D. Appl. Phys., vol. 39, no. 6, pp. 1226-1229, March 2006.

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The ag dielectric function in plasmonic metamaterials,” Opt. Express, vol. 16, no. 2, p. 1186, 2008.

P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics, vol. 6, no. 4, pp. 259-264, March 2012.

K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B, vol. 81, no. 19, p. 195128, May 2010.

D. Güney, T. Koschny, and C. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B, vol. 80, no. 12, p. 125129, September 2009.

L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, and Q. Wu, “Low-loss magnetic metamaterial at THz frequencies by suppressing radiation losses,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 6, pp. 805-811, November 2013.

J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express, vol. 17, no. 17, p. 14771, August 2009.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett., vol. 90, p. 027402, 2003.

S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B, vol. 67, no. 20, p. 201101, May 2003.

S. A. Tretyakov, “Meta-materials with wideband negative permittivity and permeability,” Microw. Opt. Technol. Lett., vol. 31, no. 3, pp. 163-165, November 2001.

N. I. Zheludev, “Applied physics: the road ahead for metamaterials,” Science, vol. 328, no. 5978, pp. 582-3, April 2010.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2713-2722, October 2003.

H. Xin, J. B. West, J. C. Mather, J. P. Doane, J. A. Higgins, H. Kazemi, and M. J. Rosker, “A twodimensional millimeter wave phase scanned lens utilizing analog electromagnetic crystal (EMXT) waveguide phase shifters,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 151-159, January 2005.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597-600, November 2006.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express, vol. 14, no. 20, p. 9344, 2006.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photonics, vol. 3. pp. 148-151, 2009.

Y. S. Kivshar, “Tunable and nonlinear metamaterials: toward functional metadevices,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 5, no. 1, p. 013001, November 2013.

B. I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B, vol. 85, no. 20, p. 205101, May 2012.

Y. Yuan, B. I. Popa, and S. A. Cummer, “Zero loss magnetic metamaterials using powered active unit cells,” Opt. Express, vol. 17, no. 18, pp. 16135-43, August 2009.

L. M. Si, T. Jiang, K. Chang, T. C. Chen, X. Lv, L. Ran, and H. Xin, “Active microwave metamaterials incorporating ideal gain devices,” Materials, vol. 4, no. 1, pp. 73-83, December. 2010.

T. Jiang, K. Chang, L. M. Si, L. Ran, and H. Xin, “Active microwave negative-index metamaterial transmission line with gain,” Phys. Rev. Lett., vol. 107, no. 20, p. 205503, November 2011.

K. Chang, T. Jiang, L. Ran, and H. Xin, “Investigation of microwave negative refractive index (NRI) transmission lines incorporating tunnel diodes,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 671-674, 2012.

W. Xu, W. J. Padilla, and S. Sonkusale, “Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits,” Opt. Express, vol. 20, no. 20, pp. 22406-11, September 2012.

E. W. Herold, “Negative resistance and devices for obtaining it,” Proc. IRE, vol. 23, no. 10, pp. 1201- 1223, October 1935.

A. Cidronali, V. Nair, G. Collodi, J. H. Lewis, M. Camprini, G. Manes, and H. Goronkin, “MMIC applications of heterostructure interband tunnel devices,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1351-1367, April 2003.

M. Premaratne and G. P. Agrawal, “Light propagation in gain media,” Cambridge University Press New York, 2011.

A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett., vol. 31, no. 14, p. 2169, 2006.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an ag aggregate by optical gain in a dielectric medium,” Opt. Lett., vol. 31, no. 20, p. 3022, 2006.

M. Noginov, G. Zhu, M. Mayy, B. Ritzo, N. Noginova, and V. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett., vol. 101, no. 22, p. 226806, November 2008.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics, vol. 2, no. 6, pp. 351-354, May 2008.

S. Xiao, V. P. Drachev, A. V Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Lossfree and active optical negative-index metamaterials,” Nature, vol. 466, no. 7307, pp. 735-8, August 2010.

A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. V. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, “Active and tunable metamaterials,” Laser Photon. Rev., vol. 5, no. 2, pp. 287-307, March 2011.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater., vol. 11, no. 7, pp. 573-84, July 2012.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Negative capacitor paves the way to ultrabroadband metamaterials,” Appl. Phys. Lett., vol. 99, no. 25, p. 254103, 2011.

S. Hrabar, I. Krois, I. Bonic, and A. Kiricenko, “Ultra-broadband simultaneous superluminal phase and group velocities in non-foster epsilonnear-zero metamaterial,” Appl. Phys. Lett., vol. 102, no. 5, p. 054108, 2013.

S. Saadat, M. Adnan, H. Mosallaei, and E. Afshari, “Composite metamaterial and metasurface integrated with non-foster active circuit elements: a bandwidth-enhancement investigation,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1210- 1218, March 2013.

M. Barbuto, A. Monti, F. Bilotti, and A. Toscano, “Design of a non-foster actively loaded SRR and application in metamaterial-inspired components,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1219-1227, March 2013.

Y. Fan, K. Z. Rajab, and Y. Hao, “Noise analysis of broadband active metamaterials with non-foster loads,” J. Appl. Phys., vol. 113, no. 23, p. 233905, June 2013.

P. Y. Chen, C. Argyropoulos, A. Alu, and A. Alù, “Broadening the cloaking bandwidth with nonfoster metasurfaces,” Phys. Rev. Lett., vol. 111, no. 23, p. 233001, December 2013.

L. C. Verman, “Negative circuit constants,” Proc. IRE, vol. 19, no. 4, pp. 676-681, April 1931.

J. G. Linvill, “Transistor negative-impedance converters,” Proc. IRE, vol. 41, no. 6, pp. 725-729, June 1953.

S. E. Sussman-Fort and R. M. Rudish, “Non-foster impedance matching of electrically-small antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp. 2230-2241, August 2009.

R. W. Ziolkowski, “Broad-bandwidth, electrically small antenna augmented with an internal nonfoster element,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 1116-1120, 2012.

C. R. White, J. S. Colburn, and R. G. Nagele, “A non-foster VHF monopole antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 584- 587, 2012.

S. Tretyakov and S. Maslovski, “Veselago materials: what is possible and impossible about the dispersion of the constitutive parameters,” IEEE Antennas Propag. Mag., vol. 49, no. 1, pp. 37-43, February 2007.

M. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett., vol. 98, no. 17, p. 177404, April 2007.

T. Mackay and A. Lakhtakia, “Comment on ‘criterion for negative refraction with low optical losses from a fundamental principle of causality’,” Phys. Rev. Lett., vol. 99, no. 18, p. 189701, November 2007.

J. Skaar, “Causality and its implications for passive and active media,” URSI International Symp. Electromag. Theory, EMTS, Berlin, 2010.

P. Kinsler and M. McCall, “Causality-based criteria for a negative refractive index must be used with care,” Phys. Rev. Lett., vol. 101, no. 16, p. 167401, October 2008.

M. Gustafsson and D. Sjöberg, “Sum rules and physical bounds on passive metamaterials,” New J. Phys., vol. 12, no. 4, p. 043046, April 2010.

M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett., vol. 106, no. 15, p. 156802, April 2011.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Comment on ‘spaser action, loss compensation, and stability in plasmonic systems with gain’,” Phys. Rev. Lett., vol. 107, no. 25, p. 259701, December 2011.

J. B. Pendry and S. A. Maier, “Comment on ‘spaser action, loss compensation, and stability in plasmonic systems with gain’,” Phys. Rev. Lett., vol. 107, no. 25, p. 259703, December 2011.

D. Ye, K. Chang, L. Ran, and H. Xin “Volumetric microwave gain medium with negative refractive index,” under review.

V. V. Varadan and R. Ro, “Analyticity, causality, energy conservation and the sign of the imaginary part of the permittivity and permeability,” In 2006 IEEE Antennas Propag. Society Intern. Symp., pp. 499-502, 2006.

N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of ag split-ring resonators coupled to InGaAs singlequantum-well gain,” Opt. Express, vol. 18, no. 23, pp. 24140-51, November 2010.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett., vol. 105, no. 22, p. 227403, November 2010.

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express, vol. 17, no. 10, p. 8548, May 2009.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2702-2712, December 2002.

A. Lai, C. Caloz, and T. Itoh, “Composite right/lefthanded transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, September 2004.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science, vol. 317, no. 5845, pp. 1698-702, September 2007.

S. Paulotto, P. Baccarelli, F. Frezza, and D. R. Jackson, “Full-wave modal dispersion analysis and broadside optimization for a class of microstrip CLRH leaky-wave antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2826- 2837, December 2008.

Q. Tang, F. Y. Meng, Q. Wu, and J. C. Lee, “A balanced composite backward and forward compact waveguide based on resonant metamaterials,” J. Appl. Phys., vol. 109, no. 7, p. 07A319, April 2011.

C. Caloz, “Perspectives on EM metamaterials,” Mater. Today, vol. 12, no. 3, pp. 12-20, 2009.

H. Chen, L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for lefthanded metamaterials,” J. Appl. Phys., vol. 100, no. 2, p. 024915, July 2006.

F. P. Casares-Miranda, C. Camacho-Penalosa, and C. Caloz, “High-gain active composite right/lefthanded leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 8, pp. 2292-2300, August 2006.

A. B. Kozyrev, I. V. Shadrivov, and Y. S. Kivshar, “Soliton generation in active nonlinear metamaterials,” Appl. Phys. Lett., vol. 104, 084105, 2014.

N. L. Tsitsas, A. Lakhtakia, and D. J. Frantzeskakis, “Solitons in a homogenized twophase, isotropic, nonlinear, particulate composite medium,” J. Opt. Soc. Am. B, vol. 29, no. 9, pp. 2610-2616, September 2012.

N. L. Tsitsas, “Analysis of electromagnetic wave propagation in frequency bands of nonlinear metamaterials,” Applied Computational Electromagnetics Society Journal, vol. 27, no. 2, pp. 169-180, February 2012.

M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express, vol. 16, pp. 19785-19798, 2008.

A. Fang, T. Koschny, and C. M. Soukoulis, “Selfconsistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B, vol. 82, no. 12, p. 121102, September 2010.

Y. Sivan, S. Xiao, U. K. Chettiar, A. V Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express, vol. 17, pp. 24060- 24074, 2009.

A. D. Boardman, Y. G. Rapoport, N. King, and V. N. Malnev, “Creating stable gain in active metamaterials,” J. Opt. Soc. Am. B, vol. 24, no. 10, p. A53, 2007.

A. P. A. Platzker, W. S. W. Struble, and K. T. H. K. T. Hetzler, “Instabilities diagnosis and the role of K in microwave circuits,” 1993 IEEE MTT-S Int. Microw. Symp. Dig., 1993.

K. Z. Rajab, Y. Hao, D. Bao, C. G. Parini, J. Vazquez, and M. Philippakis, “Stability of active magnetoinductive metamaterials,” J. Appl. Phys., vol. 108, no. 5, p. 054904, 2010.

K. Z. Rajab, Y. F. Fan, and Y. Hao, “Characterization of active metamaterials based on negative impedance converters,” J. Opt., vol. 14, no. 11, p. 114004, November 2012.

Downloads

Published

2021-08-30

How to Cite

[1]
Q. . Tang and H. . Xin, “Active Metamaterial Incorporating Gain Device/Medium: A Review”, ACES Journal, vol. 29, no. 12, pp. 944–959, Aug. 2021.

Issue

Section

Articles