Using the Best Uniform Approximation with Compression for Efficient Computation of Monostatic Scattering
Keywords:
Best uniform approximation, monostatic scattering, radar cross-section, Singular Value Decomposition (SVD)Abstract
The best uniform approximation method hybridized with Singular Value Decomposition (SVD) is proposed to reduce the time requirement for computation of monostatic Radar Cross Section (RCS). In contrast to our previous work, the traditional best uniform approximation technique is applied to compute the key excitation vectors instead of electric current vectors. Reduction of the number of multiple excitation vectors can lead to significantly reduced computation time. Furthermore, with low-rank property, the key excitation vectors could be further compressed by SVD, resulting in a more efficient method. Numerical results demonstrate that the proposed method is efficient for monostatic RCS calculation with high accuracy.
Downloads
References
R. F. Harrington, “Field computation by moment methods,” Malabar, Fla.: R. E. Krieger, 1968.
W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, “Fast and efficient algorithms in computational electromagnetics,” Boston, MA: Artech House, 2001.
J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propagation, vol. 45, no. 10, pp. 1488- 1493, October 1997.
R. S. Chen, E. K. N. Yung, C. H. Chan, and D. G. Fang, “Application of SSOR preconditioned conjugate gradient algorithm to edge FEM for 3- dimensional full wave electromagnetic boundary value problems,” IEEE Trans. Microwave Theory Technology, vol. 50, pp. 1165-1172, 2002.
R. S. Chen, X. W. Ping, and E. K. N. Yung, “Application of diagonally perturbed incomplete factorization preconditioned CG algorithms for edge FEM analysis of helemholtz equations,” IEEE Trans. Antennas Propag., vol. 54, pp. 1064-1068, 2006.
J. Lee, J. Zhang, and C. C. Lu, “Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics,” IEEE Trans. Antennas Propag., vol. 52, pp. 2277-2287, 2004.
P. L. Rui and R. S. Chen, “An efficient sparse approximate inverse preconditioning for FMM implementation,” Microwave Optical Technology Letter, vol. 49, pp. 1746-1750, 2007.
P. L. Rui, R. S. Chen, D. X. Wang, and E. K. N. Yung, “Spectral two-step preconditioning of multilevel fast multipole algorithm for the fast monostatic RCS calculation,” IEEE Trans. Antennas Propagation, vol. 55, pp. 2571-2577, 2007.
E. K. Miller and G. J. Burke, “Using model-based parameter estimation to increase the physical interpretability and numerical efficiency of computational electromagnetics,” Computer Physics Communications, vol. 68, pp. 43-75, 1991.
E. K. Miller, “Model-based parameter estimation in electromagnetics-part I: background and theoretical development,” IEEE Antennas Propag. Mag., vol. 40, no. 1, pp. 42-52, February 1998.
Z. W. Liu, R. S. Chen, and J. Q. Chen, “Adaptive sampling cubic-spline interpolation method for efficient calculation of monostatic RCS,” Microwave Optical Technology Letter, vol. 50, no. 3, pp. 751-755, 2008.
Z. W. Liu, D. Z. Ding, Z. H. Fan, and R. S. Chen, “Adaptive sampling bicubic spline interpolation method for fast computation of monstatic RCS,” Microwave Optical Technology Letter, vol. 50, no. 7, pp. 1851-1857, 2008.
C. Tian, Y. J. Xie, Y. Y. Wang, and Y. H. Jiang, “Fast solutions of wide-band RCS pattern of objects using MLFMA with the best uniform approximation,” Journal of Electronics & Information Technology, vol. 31, no. 11, pp. 2772- 2775, November 2009.
Z. Peng, M. B. Stephanson, and J. F. Lee, “Fast computation of angular responses of large-scale three-dimensional electromagnetic wave scattering,” IEEE Trans. Antennas Propagation, vol. 58, no. 9, pp. 3004-3012, September 2010.
S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagation, vol. 30, no. 3, pp. 409-418, 1982.
G. K. Carvajal, D. J. Duque, and A. J. Zozaya, “RCS estimation of 3D metallic targets using the moment method and rao-wilton-glisson basis functions,” Applied Computational Electromagnetic Society Journal, vol. 24, no. 5, pp. 487-492, October 2009.
J. Shaeffer, “Direct solve of electrically large integral equations for problem sizes to 1 M unknowns,” IEEE Trans. Antennas Propagation, vol. 56, no. 8, pp. 2306-2313, August 2008.
C. Rorres and H. Anton, “Application of linear algebra.” New York: John Wiley and Sons, 1984.
Y. Saad and M. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7, no. 3, pp. 856-869, 1986.
V. Simoncini and D. B. Szyld, “Flexible innerouter krylov subspace methods,” SIAM J. Numer. Anal., vol. 40, no. 6, pp. 2219-2239, 2003.
W. C. Gibson, “The method of moments in electromagnetics,” Boca Raton: Chapman & Hall/CRC, 2008.
X. Y. Zhang and X. Q. Sheng, “Fast RCS computation in both spatial and frequency domains using adaptive MBPE technique,” ICMTCE, 2009.
A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, “EM programmer’s notebook-benchmark radar targets for the validation of computational electromagnetics programs,” IEEE Antennas and Propagation Magazine, vol. 35, no. 1, pp. 84-89, February 1993.