An Adaptive Time-Stepping Algorithm in Weakly Coupled Electromagnetics-Thermal-Circuit Modeling
Keywords:
Coupling, electrical circuits, electro-thermal analysis, finite elements, timesteppingAbstract
This paper presents a weakly coupled formulation for the electromagnetic and thermal fields by applying the backward differentiation formula (BDF) and the Theta algorithm for the adaptive time-stepping and variable order 2D finite-element discretization. A coupling of the electromagnetic diffusion equation (EDE) and the electrical circuit equations is also included. A minimum time step criterion is adopted and an algorithm for the time-step size and order selection is implemented. The proposed model was programmed in C language. An example is presented to show the application of the formulation.
Downloads
References
M. Celuch, M. Soltysiak, and U. Erle, “Computer simulations of microwave heating with coupled electromagnetic, thermal, and kinetic phenomena,” ACES Journal, vol. 26, no. 4, pp. 275-283, April 2011.
G. Henneberger, K. Sattler, and W. Hadrys, “Coupling of magnetic and fluid flow problems and its application in induction melting apparatus,” IEEE Trans. On Magn., vol. 29, no. 2, pp. 1589- 1594, 1993.
K. Preis, O. Biro, G. Buchgraber, and I. Ticar, “Thermal-electromagnetic coupling in the finite element simulation of power transformers,” IEEE Trans. On Magn., vol. 42, no. 4, pp. 999-102, 2006.
C. Rosas, N. Moraga, V. Bubnovich, and R. Fisher, “Improvement of the cooling process of oilimmersed electrical transformers using heat pipes,” IEEE Trans. On Magn., vol. 20, no. 3, pp. 1955- 1961, 2005.
V. M. Kulkarni, K. N. Seetharamu, P. A. Aswatha Narayana, A. I. Azid, and G. A. Quadir, “Flow analysis for flip chip underfilling process using characteristic based split method,” IEEE Electronics Packaging Technology Conf., pp. 615- 619, Feb. 2004.
M. Sadiku, “A simple introduction to finite element analysis of electromagnetic problems,” IEEE Trans. On Education, vol. 32, no. 2, pp. 85-93, 1989.
J. H. Alwash and L. J. Qaseer, “Three-dimension finite element analysis of a helical motion induction motor,” ACES Journal, vol. 25, no. 8, pp. 703-712, August 2010.
I. A. Tsukerman, A. Konrad, G. Bedrosian, and M. V. K. Chari, “A survey of numerical methods for transient Eddy current problems,” IEEE Trans. On Magn., vol. 29, no. 2, pp. 1711-1716, Mar. 1993.
Q. Wang, C. Yan, Y. Shi, D. Ding, and R. Chen, “Transient analysis of electromagnetic scattering using marching-on-in-order time-domain integral equation method with curvilinear RWG basis functions,” ACES Journal, vol. 26, no. 5, pp. 429- 436, May 2011.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, pp. 41-148, 1996.
R. K. Brayton, F. G. Gustavson, and G. D. Hachtel, “A new efficient algorithm for solving differential algebraic systems using implicit backward differentiation formulas,” Proceedings of the IEEE, vol. 60, no. 1, pp. 98-108, January 1972.
G. J. Barclay, D. F. Griffiths, and D. J. Higham, “Theta method dynamics,” LMS Journal of Computation and Mathematics, vol. 3, pp. 27-43, Feb. 2000.
O. C. Zienkiewics and R. L. Taylor, The Finite Element Method Vol. 3 Fluid Dynamics, Butterworth Heinemann, pp. 64-90, 2000.
R. B. B. Ovando-Martinez, M. A. Arjona Lopez, and C. Hernandez Flores, “A finite-element variable time-stepping algorithm for solving the electromagnetic diffusion equation,” IEEE Trans. On Magn., vol. 48, no. 2, pp. 647-650, 2012.
J. Jin, W. Quan-di, Y. Ji-hui, and Z. Ya-li, “Wideband equivalent circuit model and parameter computation of automotive ignition coil based on finite element analysis,” ACES Journal, vol. 25, no. 7, pp. 612-619, July 2010.
M. A. Arjona, R. B. B. Ovando-Martinez, and C. Hernandez, “Thermal-fluid transient twodimensional characteristic-based-split finiteelement model of a distribution transformer,” IET Electr. Power Appl., vol. 6, no. 5, pp. 260-267, 2012.
M. A. Taghikhani and A. Gholami, “Heat transfer in power transformer windings with oil-forced cooling,” IET Electr. Power Appl., vol. 3, no. 1, pp. 59-66, 2009.
J. P. A. Bastos and N. Sadowski, Electromagnetic Modeling by Finite Element Methods, MarcelDekker, 2003.
T. Boonen, J. Van Lent, H. De Gersem, J. Driesen, and S. Vandewalle, “Algebraic multigrid for implicit Runge-Kutta discretizations of the Eddy current problem,” IEEE Trans. On Magn., vol. 43, no. 4, pp. 1265-1268, April 2007.
A. Nicolet and F. Delincé, “Implicit Runge-Kutta methods for transient magnetic field computation,” IEEE Trans. On Magn., vol. 32, no. 3, pp. 1405- 1408, May 1996.
L. O. Chua and P. Min, Computer Aided Analysis of Electronic Circuits algorithms and Computational Techniques, Prentice Hall, pp. 665- 685, 1975.
O. Shenk and K. Gartner, “Solving unsymmetric sparse systems of linear equations with pardiso,” Journal of Future Generation Computer Systems, vol. 20, no. 3, pp. 475-487, 2004.
O. Shenk and K. Gartner, “On fast factorization pivoting methods for symmetric indefinite systems,” Elec. Trans. On Numberical Analysis, vol. 23, pp. 158-179, 2006.
R. W. Lewis, P. Nithiarasu, and N. S. Kankanhally, Fundaments of the Finite Element Method for Heat and Fluid Flow, Wiley, 2004.
COMSOL Multiphysics user’s guide, version 3.5a, COMSOL AB, November 2008.