Rule for Mode Coupling Efficiency in Optical Waveguide Crossing

Authors

  • Billel Bentouhami 1)Universite´ Mohamed El Bachir El Ibrahimi de Bordj Bou Arreridj, Faculte´ des Sciences et de la Technologie, El-Anasser 34030, Algeria 2)Universite´ des Sciences et de la Technologie Houari Boumedie´ne, Faculte´ de Physique, Laboratoire d’Electronique Quantique, BP 32 EL Alia 16111, Bab Ezzouar, Algiers, 16311, Algeria
  • Zaia Derrar Kaddour Universite´ des Sciences et de la Technologie Houari Boumedi`ne, Faculte´ de Physique, Laboratoire d’Electronique Quantique, BP 32 EL Alia 16111, Bab Ezzouar, Algiers, 16311, Algeria

DOI:

https://doi.org/10.13052/2022.ACES.J.370515

Keywords:

Electromagnetic field, mode coupling, optical waveguide

Abstract

Crossing an optical waveguide requires a beam coupling from free space to waveguide at the entrance plane and another beam coupling from waveguide to free space at the exit plane of the waveguide. The aim of this paper is to provide a simple rule expressing the relationship between the involved numbers of free and guided modes that efficiently rebuild the field at each end of the waveguide. Using a numerical program built on Maple software, the rule was determined to be effective independently of the ratio between the beam spot size and the waveguide radius.

Downloads

Download data is not yet available.

Author Biographies

Billel Bentouhami, 1)Universite´ Mohamed El Bachir El Ibrahimi de Bordj Bou Arreridj, Faculte´ des Sciences et de la Technologie, El-Anasser 34030, Algeria 2)Universite´ des Sciences et de la Technologie Houari Boumedie´ne, Faculte´ de Physique, Laboratoire d’Electronique Quantique, BP 32 EL Alia 16111, Bab Ezzouar, Algiers, 16311, Algeria

Billel Bentouhami received the engineering degree in physics from the University of Ferhat Abbes, S ́etif, Algeria, in 2009 and the Magister degree in quantum electronics from the University of Sciences and Technology Houari Boumedi ́ene (USTHB), Algeria, in 2012. He is currently working toward the Ph.D. degree with the University of Sciences and Technology Houari Boumedi ́ene.

He is a member of the Quantum Electronics Laboratory LEQ of USTHB and is presently an Assistant Professor of Physics with the University of Bordj Bou Arreridj, Algeria. His research interests include optical waveguides, diffraction, electromagnetic field propagation and quantum electronics

Zaia Derrar Kaddour, Universite´ des Sciences et de la Technologie Houari Boumedi`ne, Faculte´ de Physique, Laboratoire d’Electronique Quantique, BP 32 EL Alia 16111, Bab Ezzouar, Algiers, 16311, Algeria

Zaia Derrar Kaddour received the Ph.D. degree in physics from the University of Sciences and Technology Houari Boumedi ́ene, Algeria, in 2007.

She is a member of Quantum Electronics Laboratory LEQ and an OSA member. She is currently a Professor of Physics with the University of Sciences and Technology Houari Boumedi ́ene, Algeria. Her current research interests include optical resonators, electromagnetics field propagation, and optics.

References

Q. Wu, J. Zhang, Y. Yang, and X. Shi, “The temperature compensation for TE011 mode resonator with bimetal material,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 34, no. 07, pp. 1070-1075, Jul. 2019.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing” Phys. Rev Applied, vol. 7, pp. 044026, 2017.

S. Pachnicke, Fiber-Optic Transmission Networks: Efficient Design and Dynamic Operation, Springer-Verlag Berlin Heidelberg, 2012.

A´. A. San-Blas and J. M. Roca, “Highly efficient technique for the full-wave analysis of circular waveguide filters including off-centered irises,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 30, no. 11, pp. 1230-1240, Nov. 2015.

R. G. Hunsperger, Integrated Optics Theory and Technology. Sixth Edition, Springer-Verlag New York.2009.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J., vol. 43, pp. 1783-1809, 1964.

J. J. Degnan, “The waveguide laser, A review,” Appl. Phys., vol. 11, pp. 1-33, 1976.

R. L. Abrams, “Coupling losses in hollow waveguide laser resonators,” IEEE J. Quantum Electron., vol. QE-8, pp. 838-843, Nov. 1972.

Y. Wong and N. H. Hiraguri, “Attenuation in lossy circular waveguides,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 34, no. 1, pp. 43-48, Jan. 2019.

P. W. Smith, “A waveguide gas laser,” Appl. Phys. Lett, vol. 19, pp. 132-134, 1971.

F. P. Roullard III and M. Bass, “Transverse mode control in high gain, millimeter bore, waveguide lasers,” IEEE J. Quantum Electron., vol. QE-13, pp. 813-819, Oct. 1977.

R. L. Abrams and A. N. Chester, “Resonator theory for hollow waveguide lasers,” Appl. Opt., vol. 13, pp. 2117-2125, 1974.

M. TACK, “The influence of losses of hollow dielectric waveguides on the mode shape,” Journal of Quantum Electronics, vol. QE-18, pp. 2022-2026, 1982.

R. Gerlach, D. Wei, and N. Amer, “Coupling efficiency of waveguide laser resonators formed by flat mirrors: Analysis and experiment,” IEEE Journal of Quantum Electronics, vol. Qe-20, no. 8, pp. 948-963, 1984.

H. Kogelnik, “Coupling and conversion coefficients for optical mode,” in Proc. Symp. Quasi-Optics, J. Fox, Ed, Brooklyn, NY: Polytechnic Press, pp. 333-347, 1964.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE, vol. 5, no. 4, pp. 1312-1329, 1966.

A. E. Siegman, Lasers, University Science Books Mill Valley, California (1986).

Z. Derrar Kaddour, A. Taleb, K. Ait-Ameur, and G. Martel, “Revisiting gouy phase,” Optics Communications, vol. 280, pp. 256-263, 2007.

Z. Derrar Kaddour, A. Taleb, K. Ait Ameur, G. Martel, and E. Cagniot, “Alternative model for computing intensity patterns through apertured ABCD systems,” Optics Communications, vol. 281, pp. 1384-1395, 2008.

Downloads

Published

2022-11-14

How to Cite

[1]
B. . Bentouhami and Z. D. . Kaddour, “Rule for Mode Coupling Efficiency in Optical Waveguide Crossing”, ACES Journal, vol. 37, no. 05, pp. 648–653, Nov. 2022.