Plasmonic Enhancement of Irregular Shape Nano-Patch for Thin Film Silicon Solar Cells

Authors

  • Nathan Burford Computational Electromagnetics Group Microelectronics-Photonics Program University of Arkansas, Fayetteville, AR, 72701, United States
  • Magda El-Shenawee Department of Electrical Engineering University of Arkansas, Fayetteville, AR, 72701, United States

Keywords:

Aluminum nanostructures, enhanced electromagnetic fields, plasmons, solar energy

Abstract

In this work plasmonic resonance of highly irregular aluminum nanostructures on a silicon photovoltaic substrate is investigated. These structures are inspired by natural surface structuring that occurs during the top-down aluminum induced crystallization of amorphous silicon. The computer simulations are obtained using the Ansys® HFSS allowing studying the enhanced fields transmitted into the silicon layer. The obtained results show significant light trapping and enhancement of the transmitted fields when these nanostructures are composed of high aluminum and low silicon concentration. These effects decrease for lower aluminum and high silicon concentrations cases nanostructures.

Downloads

Download data is not yet available.

References

G. Crabtree and N. Lewis, “Solar energy conversion,” Physics Today, pp. 37-42, Mar., 2007.

D. Kotter, S. Novack, W. Slafer, and P. Pinhero, “Solar nantenna electromagnetic collectors,” Proc. 2nd Int. Conf. Energy and Sustainability, pp. 1-7, Jacksonville, FL, 2008.

D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett., vol. 89, no. 093103, pp. 1-3, Aug. 2006.

W. Warrick, R. Kappera, and M. Tayahi, “Enhanced optical absorption in thin film solar cells by surface plasmons,” in International Conference on Photonics, Langkawi, pp. 1-5, 2010.

B. Rand, P. Peumans, and S. Forrest, “Long-rang absorption enhancement in organic tandem thinfilm solar cells containing silver nanoclusters,” J. Appl. Phys., vol. 96, no. 12, pp. 7519-7526, Dec. 2004.

J. Zhu, M. Xue, H. Shen, Z. Wu, S. Kim, J. Ho, A. Hassani-Afshar, B. Zeng, and K. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett., vol. 98, no. 151110, pp. 1-3, Apr. 2011.

A. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett., vol. 98, no. 113112, pp. 1-3, Mar. 2011.

M. Dühring, N. Mortensen, and O. Sigmund, “Plasmonic versus dielectric enhancement in thinfilm solar cells,” Appl. Phys. Lett., vol. 100, no. 211914, pp. 1-4, May 2012.

G. Beaucarne, “Silicon thin-film solar cells,” Advances in Opto. Electronics, vol. 2007, no. 36970, pp. 1-12, Aug. 2007.

V. Ferry, M. Verschuuren, H. Li, E. Verhagen, R. Walters, R. Schropp, H. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Optics Express, vol. 18, no. S2, pp. A237-A245, June 2010.

S. Mokkapati, F. Beck, A. Polman, and K. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett., vol. 95, no. 053115, pp. 1-3, Aug. 2009.

S. Mokkapati, F. Beck, R. Waele, A. Polman, and K. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D: Appl. Phys., vol. 44, no. 185101, pp. 1-9, Apr. 2011.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature, vol. 9, pp. 205-213, Mar. 2010.

S. Pallai and M. Green, “Plasmonics for photovoltaic applications,” Solar Energy Materials and Solar Cells, vol. 94, pp. 1481-1486, Mar. 2010.

F. Tsai, J. Wang, J. Huang, Y. Kiang, and C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Optics Express, vol. 18, no. S2, pp. A207-A220, 2010.

F. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Optics Express, vol. 19, no. S2, pp. A146-A156, Feb. 2011.

H. Fischer and O. Martin, “Engineering the optical response of plasmonic nanoantennas,” Optics Express, vol. 16, no. 12, pp. 9144-9154, June 2008.

S. Lim, W. Mar, P. Matheu, D. Derkacs, and E. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys., vol. 101, no. 104309, pp. 1-7, May 2007.

Y. Akimov and W. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics, vol. 6, pp. 155-161, Oct. 2010.

M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Optics Express, vol. 19, no. S4, pp. A763-A771, July 2011.

J. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett., vol. 94, no. 221111, pp. 1-3, June 2009.

N. Burford and M. El-Shenawee, “Parallel MoM computation of localized field in silicon due to finite array of nanotoroids,” Proc. 29th Annual Review of Progress in Applied Computational Electromagnetics, March 24-28, 2013.

J. Wang, F. Tsai, J. Huang, C. Chen, N. Li, Y. Kiang, and C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Optics Express, vol. 18, no. 3, pp. 2682-2694, Feb. 2010.

N. Lal, B. Soares, J. Sinha, F. Huang, S. Mahajan, P. Bartlett, N. Greenham, and J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Optics Express, vol. 19, no. 12, pp. 11256-11263, June 2011.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett., vol. 96, no. 261109, July 2010.

W. Cao, T. Huang, X. Xu, and H. Elsayed-Ali, “Localized surface plasmon resonance of single silver nanoparticles studies by dark-field optical microscopy and spectroscopy, ” J. Appl. Phys., vol. 109, no. 034310, pp. 1-6, Feb. 2011.

K. Sendur, “Optical aspects of the interaction of focused beams with plasmonic nanoparticles,” Appl. Comp. Electro. Society (ACES) Journal, vol. 27, no. 2, pp. 181-188, Feb. 2012.

L. Hammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett., vol. 8, no. 5, pp. 1461-1471, Feb. 2008.

M. El-Shenawee, “Polarization dependence of plasmonic nanotoroid dimer antenna,” IEEE Antennas Propagat. Lett., vol. 9, pp. 463-466, 2010.

M. El-Shenawee, P. Blake, A. M. Hassan, and D. K. Roper, “Surface plasmons of finite nanoring arrays,” Proc. of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, pp. 1609-1612, 2011

N. Large, J. Aizpurua, V. Lin, S. Teo, R. Marty, S. Tripathy, and A. Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Optics Express, vol. 19, no. 6, pp. 5587- 5595, Mar. 2011.

M. El-Shenawee, D. Macias, A. Baudrion, and R. Bachelot, “Torus nano-antenna: enhanced field and radiation pattern,” Proc. of the IEEE Int. Symp. on Antennas and Prop., and USNC/URSI National Radio Science Meeting, Charleston SC, USA, June 1-5, 2009.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B, vol. 76, no. 245422, pp. 1-5, 2007.

K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett., vol. 93, no. 121904, pp. 1-3, Sept. 2008.

Y. Akimov and W. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology, vol. 21, no. 235201, pp. 1-6, May 2010.

V. Kochergin, L. Neely, C. Jao, and H. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett., vol. 98, no. 133305, pp. 1-3, Mar. 2011.

N. Burford, M. El-Shenawee, S. Shumate, D. Hutchings, and H. Naseem, “Field enhancement due to surface structuring during aluminum induced crystallization of amorphous silicon,” Proc. of the IEEE Int. Symp. on Antennas and Prop. and USNC/URSI National Radio Science Meeting, Chicago, USA, July 8-13, 2012.

Z. Wang, L. Jeurgens, J. Wang, and E. Mittemeijer, “Fundamentals of metal-induced crystallization of amorphous semiconductors,” Advanced Eng. Materials, vol. 11, no. 3, 2009.

S. D. Shumate, M. K. Hafeezuddin, H. A. Naseem, and D. A. Hutchings, “Microstructural influence of hydrogenated amorphous silicon on polycrystalline emitter solar cells prepared by top-down aluminum induced crystallization,” Proc. of the 2011 IEEE PVSC, Seattle, Washington, June 19-24, 2011.

J. Hoffmann, C. Hafner, P. Leidenberger, J. Hasselbarth, and S. Burger, “Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nano antennas,” Proc. SPIE, vol. 7390, pp. 73900J-73900J-11, 2009.

A. M. Hassan and M. El-Shenawee, “Mathematical modeling of breast lesion growth” Proceedings of the Annual Review of Progress in Applied Computational Electromagnetics, pp. 86-91, Niagara Falls, Canada, March 30 -April 4, 2008.

E. Palik, Handbook of Optical Constants of Solids, New York: Academic, 1985.

J. M. Taboada, M. G. Araújo, J. Rivero, L. Landesa, and F. Obelleiro, “Surface integral equation solvers for large-scale conductors, metamaterials and plasmonic nanostructures,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 27, no. 2, pp. 189-197, Feb. 2012.

Downloads

Published

2021-10-06

How to Cite

[1]
N. . Burford and M. . El-Shenawee, “Plasmonic Enhancement of Irregular Shape Nano-Patch for Thin Film Silicon Solar Cells”, ACES Journal, vol. 28, no. 05, pp. 359–373, Oct. 2021.

Issue

Section

General Submission