Substrate Integrated Waveguide-Fed Tapered Slot Antenna With Smooth Performance Characteristics Over an Ultra-Wide Bandwidth

Authors

  • Lisa S. Locke Department of Electrical Engineering University of Victoria, Victoria, BC V8W 3P6, Canada , Herzberg Institute of Astrophysics, Victoria, BC, V9E 2E7, Canada
  • Jens Bornemann Department of Electrical Engineering University of Victoria, Victoria, BC V8W 3P6, Canada
  • Stéphane Claude Herzberg Institute of Astrophysics, Victoria, BC, V9E 2E7, Canada

Keywords:

Antipodal tapered slot antenna, beam width, gain, polarization, substrate integrated waveguide, ultra-wideband

Abstract

We present an ultra-wide extended Kband (18 GHz – 30 GHz) planar linear tapered slot antenna (LTSA) design. From a parametric study involving eight designs, the best compromise LTSA is selected in terms of flattest gain and beam width and most symmetric beam width. The design is antipodal with alumina (?r = 10) substrate and fed with substrate integrated waveguide (SIW). Regular corrugations improve cross-polarization, input return loss, and gain. Numerical simulations use finite element analysis and time domain finite integration technique field solvers. The resulting design has half power beam widths (HPBW) of only ± 3.2° and ± 2.5° variation in frequency in the E- and H-planes, respectively. Cross-polarization levels at boresight are 35.7 dB at 18 GHz and 17.4 dB at 30 GHz, return loss is better than -11.7 dB and gain is 9.23 dB with ± 0.40 dB variation with frequency. Alternatively, for imaging systems requiring efficient illumination of a reflector or focusing elements, a second resulting design shows near-perfect beam symmetry with HPBWE/HPBWH = 0.91. These two LTSAs are good candidates for dual-polarization focal plane array feed applications in astronomy imaging.

Downloads

Download data is not yet available.

References

H. Holter, T. -H. Chio, and D. Schaubert, “Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays,” IEEE Trans. Antennas Propagat., vol. 48, pp. 1707-1718, 2000.

W. A. van Cappellen and L. Bakker, “APERTIF: phased array feeds for the Westerbork synthesis radio telescope,” IEEE Int. Symp. Phased Array Systems Tech., pp. 640-647, Waltham, MA, Oct. 2010.

B. Veidt, G. Hovey, T. Burgess, R. Smegal, R. Messing, A. Willis, A. Gray, and P. Dewdney, “Demonstration of a dual-polarized phased-array feed,” IEEE Trans. Antennas Propagat., vol. 59, pp. 2047-2057, 2011.

P. Gibson, “The Vivaldi aerial,” Proc. 9th European Microwave Conf., pp. 101-105, Brighton, UK, June 1979.

K. Yngvesson, D. Schaubert, T. Korzeniowski, E. Kollberg, T. Thungren, and J. Johansson, “Endfire tapered slot antennas on dielectric substrates,” IEEE Trans. Antennas Propagat., vol. 33, pp. 1392-1400, 1985.

K. S. Yngvesson, T. L. Korzeniowski, Y. -S. Kim, E. Kollberg, and J. F. Johansson, “The tapered slot antenna - A new integrated element for millimeter wave applications,” IEEE Trans. on Microwave Theory Tech., vol. 37, pp. 365-374, Feb. 1989.

M. W. Elsallal and J. C. Mather, “An ultra-thin, decade (10:10) bandwidth, modular "BAVA" array with low cross-polarization,” IEEE AP-S Int. Symp. Dig., pp. 1980-1983, Spokane, WA, July 2011.

S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, “A mm-wave tapered slot antenna with improved radiation pattern,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 959-962, Denver, CO, June 1997.

C. -M. Hsu, L. Murphy, T. -L. Chin, and E. Arvas, “Vivaldi antenna for GPR,” Proc. ACES Conf., pp. 490-494, Monterey, CA, Mar. 2009.

T. Namas and M. Hasanovic, “Ultrawideband antipodal Vivaldi antenna for road surface scanner based on inverse scattering,” Proc. ACES Conf., pp. 882-887, Monterey, CA, Apr. 2012.

Z. -L. Zhou, L. Li, J. -S. Hong, and B. -Z. Wang, “A novel harmonic suppression antenna with both compact size and wide bandwidth,” ACES Journal, vol. 27, pp. 435-440, May 2012.

W. O’Keefe Coburn and A. I. Zaghloul, “Wire realization of a tapered slot antenna with reconfigurable elements,” Proc. ACES Conf., pp. 324-329, Monterey, CA, Mar. 2011.

D. Deslandes and K. Wu, “Integrated microstrip and rectangular waveguide in planar form,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 68-70, Feb. 2001.

D. Deslandes, “Design equations for tapered microstrip-to-substrate integrated waveguide transitions,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 707-707, Anaheim, CA, 2010.

F. Taringou and J. Bornemann, “New substrateintegrated to coplanar waveguide transition,” Proc. 41st European Microwave Conf., pp. 428-431, Manchester, UK, 2011.

N. Fourikis, N. Lioutas, and N. Shuley, “Parametric study of the co- and cross-polarisation characteristics of tapered planar and anitpodal slotline antennas,” IEE Proc. Microw. Antennas Propag., vol. 140, pp. 17-22, Feb. 1993.

S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, “Characteristics of a mm-wave tapered slot antenna with corrugated edges,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 533-536, Baltimore, MD, June 1998.

L. Yan, W. Hong, G. Hua, J. Chen, K. Wu, and T. Cui, “Simulation and experiment on SIW slot array antennas,” IEEE Microwave Wireless Comp. Lett., vol. 14, pp. 446-448, Sep. 2004.

D. Dousset, Développement de Composants SIW dans la Bande 3 d'ALMA (84-116 GHz) et Conception d'une Jonction Orthomode (OMT) dans la Bande 1 d'ALMA (31-45 GHz) en Technologie Guide d'onde, Ph.D. dissertation, École Polytechnique de Montréal, Montreal, Canada, Aug. 2010.

A. Ludwig, “The definition of cross-polarisation,” IEEE Trans. Antennas Propag., vol. 21, pp. 116-119, 1973.

E. Gazit, “Improved design of the Vivaldi antenna,” IEE Proc. Microw. Antennas Propag., vol. 135, pp. 89-92, Apr. 1988.

H. Sato, K. Sawaya, N. Arai, Y. Wagatsuma, and K. Mizuno, “Broadband FDTD analysis of Fermi antenna with narrow width substrate,” IEEE AP-S Int. Symp. Dig., pp. 261-264, Columbus, OH, June 2003.

Downloads

Published

2021-10-06

How to Cite

[1]
L. S. . Locke, J. . Bornemann, and S. . Claude, “Substrate Integrated Waveguide-Fed Tapered Slot Antenna With Smooth Performance Characteristics Over an Ultra-Wide Bandwidth”, ACES Journal, vol. 28, no. 05, pp. 454–462, Oct. 2021.

Issue

Section

General Submission