A Novel Design of Aperiodic Arrays for Ultrawideband Beam Scanning and Full Polarization Reconfiguration

Authors

  • Ziyu Zhang State Key Laboratory of Media Convergence and Communication Communication University of China, Beijing, 100024, China
  • Jia Liu State Key Laboratory of Media Convergence and Communication Communication University of China, Beijing, 100024, China
  • Jianxun Su State Key Laboratory of Media Convergence and Communication Communication University of China, Beijing, 100024, China
  • Jiming Song Electrical and Computer Engineering Iowa State University, Ames, IA 50011, USA

Keywords:

Array synthesis, beam scanning, polarization reconfiguration, ultrawideband

Abstract

In this letter, a multifunction aperture array is proposed for ultrawideband (UWB) scanning and polarization reconfiguration. The UWB array consisted of linearly polarized elements is capable of operating in four polarization modes (+45° linear polarization (LP), -45° linear polarization, left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP)). This work involves two essential techniques: (a) A new beam-scanning UWB array synthesis approach. An iterative convex optimization strategy is utilized to determine the element locations and obtain the minimum sidelobe level (SLL) for multiple patterns. (b) The polarization reconfigurable technique for beam-scannable arrays. In this part, a sequential rotation and excitation compensation (SR-EC) technique provides polarization reconfiguration for a beam-scannable array consisting of linearly polarized elements. A beam-scanning UWB array is designed by using the proposed UWB array synthesis approach and the SR-EC polarization reconfigurable technique. The Feko numerical result shows 0°-60° beam peak steering, a 4:1 bandwidth (1-4 GHz), and fourpolarization reconfigurability.

Downloads

Download data is not yet available.

References

B. Wang, S. Yang, Y. Chen, S. Qu, and J. Hu, “Low cross-polarization ultrawideband tightly coupled balanced antipodal dipole array,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4479- 4488, June 2020.

W. F. Moulder, K. Sertel, and J. L. Volakis, “Superstrate-enhanced ultrawideband tightly coupled array with resistive FSS,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4166-4172, Sep. 2012.

E. Yetisir, N. Ghalichechian, and J. L. Volakis, “Ultrawideband array with 70° scanning using FSS superstrate,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4256-4265, Oct. 2016.

H. Zhang, S. Yang, S.-W. Xiao, Y. Chen, S.-W. Qu, and J. Hu, “Ultrawideband phased antenna arrays based on tightly coupled open folded dipoles,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, pp. 378-382, Feb. 2019.

R. L. Haupt, “Genetic algorithm applications for phased arrays,” Applied Computational Electromagnetics Society Journal, vol. 21, no. 3, pp. 1054- 4887, Nov. 2006.

M. H. Rahmani and A. Pirhadi, “Optimum design of conformal array antenna with a shaped radiation pattern and wideband feeding network,” Applied Computational Electromagnetics Society Journal, vol. 29, no. 1, pp. 1054-4887, Jan. 2014.

W. Shi, Y. Li, and S. A. Vorobyov, “Low mutual coupling sparse array design using ULA fitting,” in Proc. ICASSP. IEEE, pp. 4610-4614, May 2021.

W. Shi, S. A. Vorobyov, and Y. Li “ULA fitting for sparse array design,” arXiv e-prints, arXiv: 2102.02987, Feb. 2021.

W. Shi, Y. Li, L. Zhao, and X. Liu, “Controllable sparse antenna array for adaptive beamforming,” IEEE Access, vol. 7, pp. 6412-6423, Jan. 2019.

Y. Liu, Y. Yang, F. Han, Q. H. Liu, and Y. J. Guo, “Improved beam-scannable ultra-wideband sparse antenna arrays by iterative convex optimization based on raised power series representation,” IEEE Antennas Wireless Propag. Lett., vol. 68, no. 7, pp. 1-1, 2020.

M. D. Gregory and D. H. Werner, “Ultrawideband aperiodic antenna arrays based on optimized raised power series representations,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 756-764, Mar. 2010.

Y. J. Sung, T. U. Jang, and Y. S. Kim, “A reconfigurable microstrip antenna for switchable polarization,” IEEE Antennas Wireless Propag. Lett., vol. 14, no. 11, pp. 534-536, Nov. 2004.

C. Wenquan, Z. Bangning, L. Aijun, Y. Tongbin, G. Daosheng, and P. Kegang, “A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 453-456, Feb. 2012.

N. N.-T. Muhammad Ikram and Amin Abbosh, “A simple single-layered continuous frequency and polarization-reconfigurable patch antenna array,” IEEE Trans. Antennas Propag., vol. 10, no. 1109, pp. 1-6, 2019.

Y. Fan, R. Li, and Y. Cui, “Development of polarisation reconfigurable omnidirectional antennas using crossed dipoles,” IET Microw. Antenna P, vol. 13, no. 4, pp. 485-491, Nov. 2019.

J.-S. Row and Y.-H. Wei, “Wideband reconfigurable crossed-dipole antenna with quad-polarization diversity,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2090-2094, Apr. 2018.

B. Babakhani, S. K. Sharma, and N. R. Labadie, “A frequency agile microstrip patch phased array antenna with polarization reconfiguration,” IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4316- 4327, Oct. 2016.

J. Huang, “A technique for an array to generate circular polarization with linearly polarized elements,” IEEE Trans. Antennas Propag., vol. 34, no. 9, pp. 1113-1124, Sep. 1986.

A. B. Smolders and U. Johannsen, “Axial ratio enhancement for circularly-polarized millimeterwave phased-arrays using a sequential rotation technique,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3465-3469, Sep. 2011.

Downloads

Published

2021-10-21

How to Cite

[1]
Z. . Zhang, J. . Liu, J. . Su, and J. . Song, “A Novel Design of Aperiodic Arrays for Ultrawideband Beam Scanning and Full Polarization Reconfiguration”, ACES Journal, vol. 36, no. 08, pp. 946–952, Oct. 2021.

Issue

Section

Articles