Circuit Modelling Methodology for Dual-band Planar Antennas

Authors

  • Kim Ho Yeap Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Tobias Meister Fakultät Angewandte Natur- und Kulturwissenschaften Ostbayerische Technische Hochschule Regensburg, Postfach 12 03 27, 93025 Regensburg, Germany
  • Zi Xin Oh Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Humaira Nisar Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

Keywords:

Data-fitting algorithm, equivalent circuit, Foster canonical network, planar antenna, resonant bands

Abstract

This paper presents a simple and systematic approach to determine the equivalent frequencyindependent circuit model for a dual-band planar antenna. The Foster Canonical network synthesis technique with two RLC tanks has been employed to generate the two resonant bands of the antenna. The transfer function model is subsequently refined using a data fitting algorithm (viz the Nelder-Mead simplex algorithm). Parametric adjustments are performed at the final stage in order to further improve the accuracy of the final parameters.

Downloads

Download data is not yet available.

References

C. Rowell and E. Y. Lam, “Mobile-phone antenna design,” IEEE Antennas and Propagat. Magazine, vol. 54, no. 4, pp. 14-34, Aug. 2012.

Z. Ying, “Progress of multiband antenna technology in mobile phone industry,” IEE Wideband and Multi-band Antennas and Arrays, Birmingham, UK, Sep. 7, 2005.

Z. Ying, “Multi-band non-uniform helical antennas,” 1996-IO (granted first in USA), US006122102, WO-9815028.

I. Egorov and Z. Ying, “A non-uniform helical antenna for dual band cellular phones,” IEEE Antennas and Propagat. Society Int. Symp., Salt Lake City, USA, July 16-21, 2000.

P. Haapalg and P Vainikainen, “Helical antennas for multi-mode mobile phones,” 26th European Microwave Conf., Prague, pp. 327-331, 1996.

G. J. Hayes, “Dual band meander antenna,” US0459553, WO-WS08058, 1996.

K. H. Yeap, C. S. Voon, T. Hiraguri, and H. Nisar, “A compact dual-band implantable antenna for medical telemetry,” Microwave and Opt. Technol. Lett., vol. 61, pp. 2105-2109, July 2019.

C. S. Voon, K. H. Yeap, K. C. Lai, C. K. Seah, and H. Nisar, “A compact double-psi-shaped dual band patch antenna for WLAN/LTE applications,” Microwave and Opt. Technol. Lett., vol. 60, pp. 1271-1275, Apr. 2018.

A. Altaf and M. Seo, “A tilted-D-shaped monopole antenna with wide dual-band dual-sense circular polarization,” IEEE Antennas and Wireless Propagat. Lett., vol. 17, no. 12, pp. 2464-2468, 2018.

W. L. Yeo, K. C. Lai, K. H. Yeap, P. C. Teh, and H. Nisar, “A compact-dual band hook-shaped antenna for wireless applications,” Microwave and Opt. Technol. Lett., vol. 59, no. 8, pp. 1882-1887, Aug. 2017.

L. Adam, M. N. M. Yasin, H. A. Rahim, P. J. Soh, and M. F. Abdulmalek, “A compact dual-band rectenna for ambient RF energy harvesting,” Microwave Opt. Technol. Lett., vol. 60, pp. 2740- 2748, 2018.

H. R. Cheong, K. H. Yeap, K. C. Lai, P. C. Teh, and H. Nisar, “A compact CPW-fed antenna with S-shaped patches for multiband applications,” Microwave and Opt. Technol. Lett., vol. 59, no. 3, pp. 541-546, Mar. 2017.

K. H. Yeap, W. L. Yeo, K. C. Lai, T. Hiraguri, K. Hirasawa, and Z. X. Oh, “A compact E-shaped antenna with C-shaped slots and a back-patch for multiband applications,” J. of Electrical Engineering, vol. 71, no. 1, pp. 49-54, Feb. 2020.

High Frequency Structure Simulation (HFSS), Ansys, Inc., Canonsburg, PA.

CST Studio Suite, Dassault Systèmes Simulia Corp., Providence, Rhode Island.

Simulation Program with Integrated Circuit Emphasis (SPICE), University of California, Berkeley, California.

R. M. Foster, “A reactance theorem,” Bell Syst. Tech. J., vol. 3, no. 2, pp. 259-267, Apr. 1924.

K. H. Sayidmarie and L. S. Yahya, “Modeling of dual-band cresecent-shape monopole antenna for WLAN applications,” Int. J. of Electromagnetics and Applications, vol. 4, no. 2, pp. 31-39, 2014.

D. Caratelli, N. Haider, and A. Yorovoy, “Analytically based extraction of Foster-like frequency-independent antenna equivalent circuits,” Proc. of the Int. Symp. on Electromagnetic Theory, Hiroshima, Japan, pp. 506-509, May 20-24, 2013.

O. K. Heong, C. K. Chakrabarty, and G. C. Hock, “Circuit modeling for rectangular printed disc monopole antenna with slot for UWB system,” Proc. of the 3rd Int. Conf. on Intelligent Sys. Modelling and Simulation, Kota Kinabalu, Malaysia, pp. 727-731, Feb. 8-10, 2012.

S. B. T. Wang, A. M. Niknejad, and R. W. Brodersen, “Circuit modeling methodology for UWB omnidirectional small antennas,” IEEE J. on Selected Areas in Communications, vol. 24, no. 4, pp. 871-877, Apr. 2006.

T. Ali, K. D. Prasad, and R. C. Biradar, “A miniaturized slotted multiband antenna for wireless applications,” J. of Computational Electronics, vol. 17, pp. 1056-1070, 2018.

M. Ansarizadeh, A. Ghorbani, and R. A. AbdAlhameed, “An approach to equivalent circuit modeling of rectangular microstrip antennas,” Progress in Electromagnetics Research B, vol. 8, pp. 77-86, 2008.

Downloads

Published

2021-10-21

How to Cite

[1]
K. H. . Yeap, . T. . Meister, Z. X. . Oh, and H. . Nisar, “Circuit Modelling Methodology for Dual-band Planar Antennas”, ACES Journal, vol. 36, no. 08, pp. 1112–1115, Oct. 2021.

Issue

Section

General Submission