Gain Enhancement Planar Lens Antenna based on Wideband Focusing Gradient Meta-surface

Authors

  • Qiming Yu College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
  • Shaobin Liu College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
  • Zhengyu Huang College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
  • Xiangkun Kong College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
  • Yuehong Hu College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
  • Yongdiao Wen College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China

Keywords:

Broadband gain enhancement, focusing gradient meta-surface, lens antenna, transmissive

Abstract

A three-layered transmitting focusing gradient meta-surface (FGMS) has been proposed, which can achieve broadband gain enhancement from 8.2 GHz to 10 GHz. The element of broadband transmitting FGMS has high transmitting efficiencies that over 0.7 and achieve [0, 2π] phase range with a flat and linear trend in the operating band. The FGMS can transform the spherical waves into plane waves. Three patch antennas working at 8.2 GHz, 9.1 GHz, and 10 GHz respectively are placed the focus of broadband FGMS as the spherical-wave source to build a broadband planar lens antenna system. It achieves a simulation gain of 15.44 dBi which is 7.51dB higher than that of the bare patch antenna at 10 GHz with satisfying SLLs and beamwidths. However, it enhanced the gain of the bare patch antenna in a wide operating band. Finally, the FGMS and the patch antenna are fabricated and measured. The measured results are in good agreement with the simulations.

Downloads

Download data is not yet available.

References

J. Zhao, B. Li, Z. N. Chen, and C. W. Qiu, “Redirection of sound waves using acoustic metasurface,” Appl. Phys. Lett., vol. 103, no. 15, p. 151604, 2013.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett., vol. 104, no. 22, p. 221110. 2014.

X. Wan, W. X. Jiang, H. F. Ma, and T. J. Cui, “A broadband transformation-optics metasurface lens,” Appl. Phys. Lett., vol. 104, no. 15, p. 151601, 2014.

C. Saeidi and D. Weide, “Wideband plasmonic focusing metasurfaces,” Appl. Phys. Lett., vol. 105, no. 5, p. 053107. 2014.

T. Cai, G. M. Wang, X. F. Zhang, J. G. Liang, Y. Q. Zhuang, D. Liu, and H. X. Xu, “Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp. 5629-5636. 2015.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces,” Appl. Phys. Lett, vol. 104, no. 22, p. 221110, 2014.

Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express, vol. 21, no. 9, pp. 10739-10745, 2013.

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis,” Phys. Rev. A, vol. 2, no. 4, p. 044011, 2014.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett., vol. 110, no. 20, p. 203903. 2013.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, pp. 333- 337, 2011.

A. Belen, P. Mahouti, F. Güneş, and Ö Tari, “Gain enhancement of a traditional horn antenna using 3D printed square-shaped multi-layer dielectric lens for X-band applications,” Appl. Comput. Electromagn. Soc. J., vol. 36, no. 2, pp. 132-138, 2021.

A. Belen and E. Tetik, “Realization of modified elliptical shaped dielectric lens antenna for X band applications with 3D printing technology,” Appl. Comput. Electromagn. Soc. J., vol. 35, no. 8, pp. 916-921, 2020.

S. Loredo, G. León, O. F. Robledo, and E. G. Plaza, “Phase-only synthesis algorithm for transmitarrays and dielectric lenses,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 3, pp. 259-264, 2018.

H. X. Xu, G. M. Wang, and T. Cai, “Miniaturization of 3-D anistropic zero-refractive-index metamaterials with application to directive emissions,” IEEE Trans. Antennas Propagat., vol. 62, no. 6, pp. 3141-3149, 2014.

H. X. Xu, G. M. Wang, Z. Tao, and T. Cai, “An octave-bandwidth half Maxwell fish-eye lens antenna using three-dimensional gradient-index fractal metamaterials,” IEEE Trans. Antennas Propagat., vol. 62, no. 9, pp. 4823-4828, 2014.

R. S. Malfajani and Z. Atlasbaf, “Design and implementation of a dual-band single layer reflectarray in X and K bands,” IEEE Trans. Antennas Propagat., vol. 62, no. 8, pp. 4425-4431, 2014.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmitarray antenna design using cross-slot elements with no dielectric substrate,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 177- 180, 2014.

H. Li, G. Wang, H. X. Xu, T. Cai, and J. Liang, “X-band phase-gradient metasurface for high-gain lens antenna application,” IEEE Trans. Antennas Propagat., vol. 63, no. 11, pp. 5144-5149, 2015.

H. Li, G. Wang, J. Liang, X. Gao, H. Hou, and X. Jia, “Single-layer focusing gradient metasurface for ultrathin planar lens antenna application,” IEEE Trans. Antennas Propagat., vol. 65, no. 3, pp. 1452-1457, 2017.

H. Hai-Sheng, W. Guang-Ming, L. Hai-Peng, C. Tong, and G. Wen-Long, “Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna,” Acta Physica Sinica, vol. 65, no. 2, 2016.

X. Zhao, C. Yuan, L. Liu, S. Peng, Q. Zhang, and H. Zhou, “All-metal transmit-array for circular polarization design using rotated cross-slot elements for high-power microwave applications,” IEEE Trans. Antennas Propagat., vol. 65, no. 6, pp. 3253-3256, 2017.

Downloads

Published

2021-11-04

How to Cite

[1]
Q. . Yu, S. . Liu, Z. . Huang, X. . Kong, Y. . Hu, and Y. . Wen, “Gain Enhancement Planar Lens Antenna based on Wideband Focusing Gradient Meta-surface”, ACES Journal, vol. 36, no. 06, pp. 650–656, Nov. 2021.

Issue

Section

Articles