Design and Analysis of a Triple-band Non-zonal Polarization Electromagnetic Metamaterial Absorber
Keywords:
Electromagnetic metamaterials, polarization-insensitive, resonator, triple-bandAbstract
A facile design of a novel triple-band electromagnetic metamaterial absorber (MMA) with polarization insensitive property is proposed in this paper. Each unit of the MMA consists of upper copper resonator and bottom copper plate with middle dielectric FR-4 between them. The MMA performs three absorption peaks at 16.919 GHz, 21.084 GHz and 25.266 GHz with absorption rates 99.90%, 97.76% and 99.18%, respectively. The influence of the main structural parameters on the frequencies and absorption rates is analyzed. The absorption mechanism of the absorber is explained by electric field, magnetic field and surface current distributions, which is supported by the electromagnetic parameters, affected with magnetic resonance. The polarization-insensitivity of TE wave is verified by observing the effects of the polarization angle change from 0-90º. The MMA can be applied in radiation, spectrum imaging detector, electromagnetic wave modulator, and so on.
Downloads
References
V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77-79, Apr. 2001.
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, May 2008.
S. Maci, “A cloaking metamaterial based on an inhomogeneous linear field transformation,” IEEE T. Antenn. Propag., vol. 58, no. 4, pp. 1136-1143, Apr. 2010.
C. P. Scarborough, Z. H. Jiang, D. H. Werner, C. Rivero-Baleine, and C. Drake, “Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz,” Appl. Phys. Lett., vol. 101, no. 1, July 2012.
M. Bakir, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, “Microwave metamaterial absorber for sensing applications,” Opto.-Electron. Rev., vol. 25, no. 4, pp. 318-325, Dec. 2017.
C. Chen, Y. P. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun., vol. 406, pp. 145-150, Jan. 2018.
N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B, vol. 79, no. 12, Mar. 2009.
C. Sabah, M. D. Thomson, F. Z. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys., vol. 110, no. 6, Sep. 2011.
C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and E. Demirel, “Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application,” Opt. Commun., vol. 322, no. 322, pp. 137-142, July 2014.
H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Optics Express, vol. 16, no. 10, pp. 7181-7188, May 2008.
Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B, vol. 79, no. 4, Jan. 2009.
Y. Z. Cheng, H. L. Yang, Z. Z. Chen, and N. Wu, “Perfect metamaterial absorber based on a splitring-cross resonator,” Appl. Phys. a-Mater., vol. 102, no. 1, pp. 99-103, Jan. 2011.
J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B, vol. 83, no. 16, Apr. 2011.
F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett., vol. 100, no. 11, Mar. 2012.
Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Optics Express, vol. 17, no. 22, pp. 20256-20265, Oct. 2009.
J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys. aMater., vol. 108, no. 2, pp. 329-335, Aug. 2012.
H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal-dielectricmetal split square-ring and square array,” J. Phys. D. Appl. Phys., vol. 45, no. 20, May 2012.
Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Optics Letters, vol. 36, no. 6, pp. 945-947, Mar. 2011.
Y. H. Zhao, Q. Z. Hao, Y. Ma, M. Q. Lu, B. X. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett., vol. 100, no. 5, Jan. 2012.
L. Li, Y. Yang, and C. H. Liang, “A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes,” J. Appl. Phys., vol. 110, no. 6, Sep. 2011.
Y. Ozturk and A. E. Yilmaz, “Multiband and perfect absorber with circular fishnet metamaterial and its variations,” Applied Computational Electromagnetics Society Journal, vol. 31, no. 12, Dec. 2016.
X. J. Huang, H. L. Yang, S. Q. Yu, J. X. Wang, M. H. Li, and Q. W. Ye, “Triple-band polarizationinsensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys., vol. 113, no. 21, June 2013.
E. Delihasanlar and A. H. Yuzer, “Wearable textile fabric based 3D metamaterials absorber in X-band,” Applied Computational Electromagnetics Society Journal, vol. 35, no. 2, Feb. 2020.
J. X. Su, C. Y. Kong, Z. R. Li, X. J. Yuan, and Y. Q. Yang, “Ultra-wideband and polarizationinsensitive RCS reduction of microstrip antenna using polarization conversion metasurface,” Applied Computational Electromagnetics Society Journal, vol. 32, no. 6, pp. 524-530, June 2017.
J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Optics Express, vol. 20, no. 14, pp. 14871-14878, July 2012.
F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett., vol. 100, no. 10, Mar. 2012.
J. P. Xu, J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “Frequency-tunable metamaterial absorber with three bands,” Optik, vol. 172, no. 172, pp. 1057-1063, Nov. 2018.
T. T. Nguyen and S. Lim, “Bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep.-Uk, vol. 7, no. 1, Nov. 2017.
J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett., vol. 47, no. 1, pp. 8-U20, Jan. 2011.
B. R. Bian, S. B. Liu, S. Y. Wang, X. K. Kong, H. F. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys., vol. 114, no. 19, Nov. 2013.
O. T. Gunduz and C. Sabah, “Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application,” J. Comput. Electron., vol. 15, no. 1, pp. 228-238, Mar. 2016.
X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wideangle triple-band metamaterial absorber,” Optics Express, vol. 19, no. 10, pp. 9401-9407, May 2011.
D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65, no. 19, May 2002.
D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E, vol. 71, no. 3, May 2005.
P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, H. Cheong, W. H. Jang, and Y. P. Lee, “Symmetric metamaterials based on flower-shaped structure,” Materials Chemistry and Physics, vol. 141, no. 1, pp. 535-539, Aug. 2013.