The Meshless Local Boundary Equation Method

Authors

  • B. Honarbakhsh Department of Electrical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, IRAN
  • A. Tavakoli 1 Department of Electrical Engineering 2 Institute of Communications Technology and Applied Electromagnetics Amirkabir University of Technology (Tehran Polytechnic), Tehran, IRAN

Keywords:

Helmholtz, Laplace, meshless, vector wave equation

Abstract

A method similar to the local boundary integral equation method that preserves its properties and is free from singular integrals is proposed. The approach is based on selection of the weighting functions from a homogeneous solution of the problem rather than the fundamental solution. Many examples of 2D Laplace and Helmholtz equations and 3D vector wave equation are presented for verification. The method shows optimistic performance over piecewise smooth boundaries. Radial basis functions of thin plate spline type are used for meshless discretization. The dependable performance of the proposed method provides a hopeful applicability to numerical solutions of partial differential equations.

Downloads

Download data is not yet available.

References

Y. Marechal, “Some Meshless Methods for Electromagnetic Field Computations,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3351-3354, 1998.

C. Herault and Y. Marechal, “Boundary and Interface Conditions in Meshless Methods,” IEEE Trans. Magn., vol. 35, no. 3, pp. 1450-1453, 1999.

S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong, “Application of a Meshless Method in Electromagnetics,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3198-3201, 2001.

L. Xuan, Z. Zeng, B. Shanker, and L. Udpa, “Meshless Method for Numerical Modeling of Pulsed Eddy Currents,” IEEE Trans. Magn., vol. 40, no. 6, pp. 3457-3462, 2004.

S. L. Ho, S. S. Yang, H. C. Wong, and G. Ni, “Meshless Collocation Method Based on Radial Basis Functions and Wavelets,” IEEE Trans. Magn., vol. 40, no. 2, pp. 1021-1024, 2004.

S. L. Ho, S. S. Yang, G. Ni , H. C. Wong, and Y. Wang, “Numerical Analysis of Thin Skin Depths of 3-D Eddy-Current Problems using a Combination of Finite Element and Meshless Methods,” IEEE Trans. Magn., vol. 40, no. 2, pp. 1354-1357, 2004.

S. L. Ho, S. S. Yang, H. C. Wong, E. W. C. Lo and G. Ni, “Refinement Computations of Electromagnetic Fields using FE and Meshless Methods,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1456-1459, 2005.

Y. Zhang, K. R. Shao, D. X. Xie and J. D. Lavers, “Meshless Method Based on Orthogonal Basis for Electromagnetics,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1432-1435, 2005.

Q. Li and K. Lee, “Adaptive Meshless Method for Magnetic Field Computation,” IEEE Trans. Magn., vol. 42, no. 8, pp. 1996-2003, 2006.

R. K. Gordon and W. E. Hutchcraft, “The Use of Multiquadric Radial Basis Functions in Open Region Problems,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 21, no. 2, pp. 127-134, July 2006.

Y. Zhang, K. R. Shao, J. Zhu, D. X. Xie, and J. D. Lavers, “A Comparison of Point Interpolative Boundary Meshless Method Based on PBF and RBF for Transient Eddy-Current Analysis,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1497-1500, 2007.

F. G. Guimaraes, R. R. Saldanha, R. C. Mesquita, D. A. Lowther, and J. A. Ramirez, “A Meshless Method for Electromagnetic Field Computation Based on the Multiquadratic Technique,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1281-1284, 2007.

S. Ikuno, K. Takakura, and A. Kamitani, “Influence of Method for Imposing Essential Boundary Condition on Meshless Galerkin/Petrov-Galerkin Approaches,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1501-1504, 2007.

S. McFee, D. Ma, and M. Golshayan, “A Parallel Meshless Formulation for H-P Adaptive Finite Element Analysis,” IEEE Trans. Magn., vol. 44, no. 6, pp. 786-789, 2008.

T. Kaufmann, C. Fumeaux, and R. Vahldieck, “The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics”, IEEE MTTS Int. Microwave Symp. Dig., Atlanta, pp. 61-64, 2008.

Y. Yu and Z. Chen, “A 3-D Radial Point Interpolation Method for Meshless Time-Domain Modeling,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 8, pp. 2015-202, 2009.

Y. Yu and Z. Chen, “Towards the Development of an Unconditionally Stable Time-Domain Meshless Method,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 3, pp. 578-586, 2010.

T. Kaufmann, C. Engström, C. Fumeaux, and R. Vahldieck, “Eigenvalue Analysis and Longtime Stability of Resonant Structures for the Meshless Radial Point Interpolation Method in Time Domain”, IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3399-3408, 2010.

R. D. Soares, R. C. Mesquita, F. J. S. Moreira, “Axisymmetric Electromagnetic Resonant Cavity Solution by a Meshless Local Petrov-Galerkin Method,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 26, no. 10, pp. 792-799, October 2011.

S. N. Atluri and T. A. Zhu, “A New Meshless Local Petrov-Galerkin MLPG) Approach in Computational Mechanics,” CMES, vol. 22, pp.117-127, 1998.

T. Zhu, J.-D. Zhang, and S. N. Atluri, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,” CMES, vol. 3, no.1, pp. 223-235, 1998.

J. G. Wang and G. R. Liu, “Radial Point Interpolation Method for Elastoplastic Problems,” presented at 1st Int. Conf. Structural Stability and Dynamics, Taipei, Taiwan, 2000.

J. Jin, The Finite Element Method in Electromagnetics, Second Edition. John Wiley & Sons, 2002.

G. R. Liu, Mesh Free Methods, CRC Press, 2003.

J. C. Rautio, “The Microwave Point of View on Software Validation,” IEEE Antennas Propagat. Mag., vol. 38, no. 2, pp. 68-71, 1996.

G. R. Liu and Y. T. Gu, An Introduction to MeshFree Methods and Their Programming, Springer, 2005.

Downloads

Published

2021-12-23

How to Cite

[1]
B. . Honarbakhsh and A. . Tavakoli, “The Meshless Local Boundary Equation Method”, ACES Journal, vol. 27, no. 07, pp. 550–560, Dec. 2021.

Issue

Section

General Submission