Scalable and Fast Characteristic Mode Analysis using GPUs
DOI:
https://doi.org/10.13052/2022.ACES.J.370203Keywords:
Big data applications, characteristic mode analysis, fast, graphics processing unit, method of moments, scalabilityAbstract
Characteristic mode analysis (CMA) is used in the design and analysis of a wide range of electromagnetic devices such as antennas and nanostructures. The implementation of CMA involves the evaluation of a large method of moments (MoM) complex impedance matrix at every frequency. In this work, we use different open-source software for the GPU acceleration of the CMA. This open-source software comprises a wide range of computer science numerical and machine learning libraries not typically used for electromagnetic applications. Specifically, this paper shows how these different Python-based libraries can optimize the computational time of the matrix operations that compose the CMA algorithm. Based on our computational experiments and optimizations, we propose an approach using a GPU platform that is able to achieve up to 16×× and 26×× speedup for the CMA processing of a single 15k ×× 15k MoM matrix of a perfect electric conductor scatterer and a single 30k ×× 30k MoM matrix of a dielectric scatterer, respectively. In addition to improving the processing speed of CMA, our approach provided the same accuracy as independent CMA simulations. The speedup, efficiency, and accuracy of our CMA implementation will enable the analysis of electromagnetic systems much larger than what was previously possible at a fraction of the computational time.
Downloads
References
M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, “The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications,” IEEE Antennas and Propagation Magazine, vol. 49, no. 5, pp. 52–68, 2007.
M. Vogel, G. Gampala, D. Ludick, U. Jakobus, and C. Reddy, “Characteristic mode analysis: Putting physics back into simulation,” IEEE Antennas and Propagation Magazine, vol. 57, no. 2, pp. 307–317, 2015.
G. Angiulli, G. Amendola, and G. Di Massa, “Application of characteristic modes to the analysis of scattering from microstrip antennas,” Journal of Electromagnetic Waves and Applications, vol. 14, no. 8, pp. 1063–1081, 2000.
L. Guan, Z. He, D. Ding, and R. Chen, “Efficient characteristic mode analysis for radiation problems of antenna arrays,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 1, pp. 199–206, 2019.
N. Michishita and H. Morishita, “Helmet antenna design using characteristic mode analysis,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 35, no. 2, p. 6, 2020.
M. M. Elsewe and D. Chatterjee, “Ultra-wide bandwidth enhancement of single-layer single-feed patch antenna using the theory of characteristic modes,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 33, no. 3, p. 4, 2018.
A. Araghi and G. Dadashzadeh, “Detail-oriented design of a dual-mode antenna with orthogonal radiation patterns utilizing theory of characteristic modes,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 28, no. 10, p. 8, 2013.
Q. Wu, H.-D. Bruns, and C. Schuster, “Characteristic mode analysis of radiating structures in digital systems,” IEEE Electromagnetic Compatibility Magazine, vol. 5, no. 4, pp. 56–63, 2016.
X. Yang, Y. S. Cao, X. Wang, L. Zhang, S. He, H. Zhao, J. Hu, L. Jiang, A. Ruehli, J. Fan, and J. L. Drewniak, “EMI radiation mitigation for heatsinks using characteristic mode analysis,” in 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI). IEEE, pp. 374–378, 2018.
S. H. Yeung and C.-F. Wang, “Exploration of characteristic mode theory for electromagnetic compatibility modeling,” in 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). IEEE, pp. 1278–1282, 2018.
M. Z. Hamdalla, B. Bissen, A. N. Caruso, and A. M. Hassan, “Experimental validations of characteristic mode analysis predictions using GTEM measurements,” in 2020 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE,2020.
M. Z. Hamdalla, A. M. Hassan, and A. N. Caruso, “Characteristic mode analysis of the effect of the UAV frame material on coupling and interference,” in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, pp. 1497–1498, 2019.
M. Z. Hamdalla, A. M. Hassan, A. Caruso, J. D. Hunter, Y. Liu, V. Khilkevich, and D. G. Beetner, “Electromagnetic interference of unmanned aerial vehicles: A characteristic mode analysis approach,” in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, pp. 553–554, 2019.
A. M. Hassan, F. Vargas-Lara, J. F. Douglas, and E. J. Garboczi, “Electromagnetic resonances of individual single-walled carbon nanotubes with realistic shapes: A characteristic modes approach,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2743–2757, 2016.
P. Ylä-Oijala, D. C. Tzarouchis, E. Raninen, and A. Sihvola, “Characteristic mode analysis of plasmonic nanoantennas,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2165–2172, 2017.
K. C. Durbhakula, A. M. Hassan, F. Vargas-Lara, D. Chatterjee, M. Gaffar, J. F. Douglas, and E. J. Garboczi, “Electromagnetic scattering from individual crumpled graphene flakes: a characteristic modes approach,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 11, pp. 6035–6047, 2017.
S. Dey, D. Chatterjee, E. J. Garboczi, and A. M. Hassan, “Plasmonic nanoantenna optimization using characteristic mode analysis,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 43–53, 2019.
R. Harrington and J. Mautz, “Computation of characteristic modes for conducting bodies,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 629–639, 1971.
Q. I. Dai, J. Wu, H. Gan, Q. S. Liu, W. C. Chew, and E. Wei, “Large-scale characteristic mode analysis with fast multipole algorithms,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2608–2616, 2016.
N. Lee and A. Cichocki, “Big data matrix singular value decomposition based on low-rank tensor train decomposition,” in International Symposium on Neural Networks. Springer, pp. 121–130,2014.
R. Gu, Y. Tang, Z. Wang, S. Wang, X. Yin, C. Yuan, and Y. Huang, “Efficient large scale distributed matrix computation with Spark,” in 2015 IEEE International Conference on Big Data (Big Data). IEEE, pp. 2327–2336, 2015.
J. Liu, Y. Liang, and N. Ansari, “Spark-based large-scale matrix inversion for big data processing,” IEEE Access, vol. 4, pp. 2166– 2176, 2016.
J. Xiang, H. Meng, and A. Aboulnaga, “Scalable matrix inversion using mapreduce,” in Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 177–190, 2014.
L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley, and J. J. Dongarra, ScaLAPACK User’s Guide. USA: Society for Industrial and Applied Mathematics, 1997.
T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc., 2009.
Y. Yu, M. Tang, W. G. Aref, Q. M. Malluhi, M. M. Abbas, and M. Ouzzani, “In-memory distributed matrix computation processing and optimization,” in 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, pp. 1047–1058, 2017.
C. Misra, S. Bhattacharya, and S. K. Ghosh, “Stark: Fast and scalable Strassen’s matrix multiplication using Apache Spark,” IEEE Transactions on Big Data, 2020.
X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, X. Reynold, M. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: machine learning in apache spark,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.
S. Peng and Z. Nie, “Acceleration of the method of moments calculations by using graphics processing units,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 7, pp. 2130–2133, 2008.
E. Lezar and D. B. Davidson, “GPU-accelerated method of moments by example: Monostatic scattering,” IEEE Antennas and Propagation Magazine, vol. 52, no. 6, pp. 120–135, 2010.
T. Topa, A. Karwowski, and A. Noga, “Using GPU with CUDA to accelerate MoM-based electromagnetic simulation of wiregrid models,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 342–345, 2011.
T. Topa, A. Noga, and A. Karwowski, “Adapting MoM with RWG basis functions to GPU technology using CUDA,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 480–483,2011.
D. P. Zoric, D. I. Olcan, and B. M. Kolundzija, “Solving electrically large EM problems by using out-of-core solver accelerated with multiple graphical processing units,” in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI). IEEE, pp. 1–4, 2011.
Q. M. Nguyen, V. Dang, O. Kilic, and E. El-Araby, “Parallelizing fast multipole method for large-scale electromagnetic problems using GPU clusters,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 868–871, 2013.
J. Guan, S. Yan, and J.-M. Jin, “An openMP-CUDA implementation of multilevel fast multipole algorithm for electromagnetic simulation on multi-GPU computing systems,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3607–3616, 2013.
X. Mu, H.-X. Zhou, K. Chen, and W. Hong, “Higher order method of moments with a parallel out-of-core LU solver on GPU/CPU platform,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5634–5646, 2014.
M. J. Miranda, T. Ö zdemir, and R. J. Burkholder, “Hardware acceleration of an FMM-FFT solver using consumer-grade GPUs,” in 2016 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). IEEE, pp. 1–2, 2016.
E. Garćıa, C. Delgado, L. Lozano, and F. Ćatedra, “Efficient strategy for parallelisation of multilevel fast multipole algorithm using CUDA,” IET Microwaves, Antennas & Propagation, vol. 13, no. 10, pp. 1554–1563, 2019.
T. Topa, “Load-balanced fortran-based out-of-GPU memory implementation of the method of moments,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 813–816, 2017.
R. Adelman, N. A. Gumerov, and R. Duraiswami, “FMM/GPUaccelerated boundary element method for computational magnetics and electrostatics,” IEEE Transactions on Magnetics, vol. 53, no. 12, pp. 1–11, 2017.
K. Alsultan, P. Rao, A. Caruso, and A. Hassan, “Scalable Characteristic Mode Analysis: Requirements and Challenges,” in Large Scale Networking (LSN) Workshop on Huge Data: A Computing, Networking and Distributed Systems Perspective, pp. 1–2, 2020.
A. Weiss and A. Elsherbeni, “Computational performance of matlab and python for electromagnetic applications.” Applied Computational Electromagnetics Society (ACES) Journal, vol. 35, no. 11,2020.
S. Kaffash, R. Faraji-Dana, M. Shahabadi, and S. Safavi-Naeini, “A fast computational method for characteristic modes and eigenvalues of array antennas,” IEEE Transactions on Antennas and Propagation, 2020.
D. Tayli, M. Capek, L. Akrou, V. Losenicky, L. Jelinek, and M. Gustafsson, “Accurate and efficient evaluation of characteristic modes,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7066–7075, 2018.
M.-L. Yang, B.-Y. Wu, H.-W. Gao, and X.-Q. Sheng, “A ternary parallelization approach of mlfma for solving electromagnetic scattering problems with over 10 billion unknowns,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 11, pp. 6965– 6978, 2019.
B. L. Mrdakovic, M. M. Kostic, D. I. Olcan, and B. M. Kolundzija, “New generation of wipl-d in-core multi-gpu solver,” in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 413–414, 2018.
Y. Chang and R. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Transactions on Antennas and Propagation, vol. 25, no. 6, pp. 789–795, 1977.
R. F. Harrington, “Matrix methods for field problems,” Proceedings of the IEEE, vol. 55, no. 2, pp. 136–149, 1967.
M. Khan and D. Chatterjee, “Characteristic mode analysis of a class of empirical design techniques for probe-fed, U-slot microstrip patch antennas,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2758–2770, 2016.
Q. Wu, “Characteristic mode assisted design of dielectric resonator antennas with feedings,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5294–5304, 2019.
Y. Chen and C.-F. Wang, “Surface integral equation based characteristic mode formulation for dielectric resonators,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE, pp. 846–847, 2014.
T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, vol. 1, 2006.
S. Huang, J. Pan, C.-F. Wang, Y. Luo, and D. Yang, “Unified implementation and cross-validation of the integral equationbased formulations for the characteristic modes of dielectric bodies,” IEEE Access, vol. 8, pp. 5655–5666, 2019.
S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous computing techniques,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–35, 2015.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.
R. Nishino and S. H. C. Loomis, “Cupy: A numpy-compatible library for NVIDIA GPU calculations,” in Proceedings of Workshop on Machine Learning Systems (LearningSys) in the Thirty first Annual Conference on Neural Information Processing Systems (NIPS), 2017.
M. Capek, P. Hazdra, P. Hamouz, and J. Eichler, “A method for tracking characteristic numbers and vectors,” Progress In Electromagnetics Research, vol. 33, pp. 115–134, 2011.
J. Zhu, W. Li, and L. Zhang, “Broadband Tracking of Characteristic Modes,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 34, no. 11, p. 6, 2019.
Q. He, Z. Gong, H. Ke, and L. Guan, “A Double Modal Parameter Tracking Method To Characteristic Modes Analysis,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 32, no. 12, p. 8, 2017.
D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra, “The design and operation of CloudLab,” in 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA: USENIX Association, pp. 1–14, Jul. 2019. [Online]. Available: https://www.usenix.org/conference/atc19/presentation/duplyakin
2021. [Online]. Available: https://www.altair.com/feko/
Y. Chen, “Alternative surface integral equation-based characteristic mode analysis of dielectric resonator antennas,” IET Microwaves, Antennas & Propagation, vol. 10, no. 2, pp. 193– 201, 2016.
R. Solca, A. Haidar, S. Tomov, T. C. Schulthess, and J. Dongarra, “Poster: A novel hybrid cpu-gpu generalized eigensolver for electronic structure calculations based on fine grained memory aware tasks,” in 2012 SC Companion: High Performance Computing, Networking Storage and Analysis. IEEE, pp. 1340–1340, 2012.
D. Liu, R. Li, D. J. Lilja, and W. Xiao, “A divide-and-conquer approach for solving singular value decomposition on a heterogeneous system,” in Proceedings of the ACM International Conference on Computing Frontiers, pp. 1–10, 2013.