Convolutional Neural Network for Array Size Selection of a Dual-band Reconfigurable Array

Authors

  • Garrett A. Harris Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA
  • Corey M. Stamper Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA
  • Michael A. Saville Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA

DOI:

https://doi.org/10.13052/2023.ACES.J.380604

Keywords:

convolutional neural network, Machine Learning, pattern multiplication, Reconfigurable Array

Abstract

A convolutional neural network (CNN) is designed and trained to partially control a dual-band, large uniform rectangular array of reconfigurable radiating elements. The CNN selects the number of active elements and switch states needed to achieve a desired beam shape. Both pattern multiplication and finite element method (FEM) are used to simulate the radiation patterns of a PIN-diode square-spiral antenna array. After training on radiation pattern images of arrays calibrated for both phase and gain imbalance and mutual coupling, the CNN achieves 97 percent validation accuracy. Then, using the resulting size and switch states, the patterns are simulated with and without mutual coupling using the pattern multiplication model and FEM, respectively. The mean beam steering and 3-dB beamwidth errors without mutual coupling are less than 5.5 degrees and up to 12.3 degrees with mutual coupling.

Downloads

Download data is not yet available.

Author Biographies

Garrett A. Harris, Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA

Garrett A. Harris received his B.S.E.E. at Wright State University in 2020 and the M.S.E.E degree in 2022 via the DoD SMART scholarship. While a student he was a member of IEEE and an adviser for the Ohio Mu chapter of Tau Beta Pi. Garrett has spent two summers at Wright State’s Autonomy Technology Research Center internship with AFRL. His research interests include antenna design, remote sensing, and machine learning.

Corey M. Stamper, Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA

Corey M. Stamper received the B.S.E.E degree at Wright State University in 2020 and the M.S.E.E degree in 2021, also from Wright State University. His research interests are in applied electromagnetics, antenna design, and signal processing.

Michael A. Saville, Department of Electrical Engineering Wright State University, Dayton, Ohio, 45435, USA

Michael A. Saville received the B.S.E.E., M.S.E.E., and Ph.D. degrees from Texas A&M University in 1997, the Air Force Institute of Technology in 2000, and the University of Illinois at Urbana-Champaign in 2006, respectively. He is currently Associate Professor of Electrical Engineering at Wright State University with a broad range of research interests in applied electromagnetics and applied signal processing. He is a Senior Member of IEEE, a registered Professional Engineer in Ohio, and Associate Editor for PIER Journal and IET Electronics Letters.

References

Y. Zhou, R. S. Adve, and S. V. Hum, “Design and evaluation of pattern reconfigurable antennas for MIMO applications,” IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1084-1092, doi: 10.1109/TAP2013. 2284874, Mar. 2014.

D. Piazza, N. J. Kirsch, A. Forenza, R. W. Heath, and K. R. Dandekar, “Design and evaluation of a reconfigurable antenna array for MIMO systems,” IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 869-881, doi: 10.1109/TAP.2008.916908, Mar. 2008.

Y. Tawk, J. Constantine, and C. G. Christodoulou, Antenna Design for Cognitive Radio, Artech House, Norwood, MA, 2016.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Radiation pattern synthesis for monopulse radar applications with a reconfigurable transmitarray antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 4148-4154, doi: 10.1109/TAP.2016.2586491, Sep. 2016.

X. Wang, E. Aboutanios, M. Trinkle, and M. G. Amin, “Reconfigurable adaptive array beamforming by antenna selection,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2385-2396, doi: 10.1109/TSP.2014. 2312332, May 2014.

Y. Ji, J. Ø. Nielsen, and W. Fan, “A simultaneous wideband calibration for digital beamforming arrays at short distances [Measurements Corner],” IEEE Antennas Propag. Mag., vol. 63, no. 3, pp. 102-111, June 2021.

T. W. Nuteson, J. E. Stocker, J. S. Clark, D. S. Haque, and G. S. Mitchell, “Performance characterization of FPGA techniques for calibration and beamforming in smart antenna applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 3043-3051, doi: 10.1109/TMTT. 2002.805151, Dec. 2002.

V. Zarei, H. Boudaghi, M. Nouri, and S. A. Aghdam, “Reconfigurable circular polarization antenna with utilizing active devices for communication systems,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 30, no. 9, pp. 990-995, https://journals.riverpublishers.com/index.php/ACES/article/view/10395, Sep. 2015.

H. Moghadas, M. Zandvakili, D. Sameoto, and P. Mousavi, “Beam-reconfigurable aperture antenna by stretching or reshaping of a flexible surface,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1337-1340, doi: 10.1109/LAWP.2016.2633964, Dec. 2016.

L. Di Palma, A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “Circularly-polarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 529-540, doi: 10.1109/TAP.2016. 2633067, Feb. 2017.

W. Li, L. Bao, and Y. Li, “A novel frequency and radiation pattern reconfigurable antenna for portable device applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 30, no. 12, pp. 1276-1285, https://journals.riverpublishers.com/index.php/ACES/article/view/10291, Dec. 2015.

A. M. Morishita, C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma, “A liquid-metal monopole array with tunable frequency, gain, and beam steering,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1388-1391, doi: 10.1109/LAWP.2013.2286544, Oct. 2013.

O. A. Barro, M. Himdi, and O. Lafond, “Reconfigurable radiating antenna array using plasma tubes,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1321-1324, doi: 10.1109/LAWP.2015.2507066, 2016.

I. F. da Costa, A. Cerqueira S., D. H. Spadoti, L. G. da Silva, J. A. J. Ribeiro, and S. E. Barbin, “Optically controlled reconfigurable antenna array for mm-wave applications,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2142-2145, doi: 10.1109/LAWP. 2017.2700284, May 2017.

A. Patnaik, D. Anagnostou, C. G. Christodoulou, and J. C. Lyke, “Neurocomputational analysis of a multiband reconfigurable planar antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3453-3458, doi: 10.1109/TAP.2005.858617, Nov. 2005.

F. Zardi, P. Nayeri, P. Rocca, and R. Haupt, “Artificial intelligence for adaptive and reconfigurable antenna arrays: a review,” IEEE Antennas Propag. Mag., vol. 63, no. 3, pp. 28-38, doi: 10.1109/MAP.2020.3036097, June 2021.

B. Sheen, J. Yang, X. Feng, and M. M. U. Chowdhury, “A deep learning based modeling of reconfigurable intelligent surface assisted wireless communications for phase shift configuration,” IEEE Open J. Commun. Soc., vol. 2, pp. 262-272, doi: 10.1109/OJCOMS.2021.3050119, Jan. 2021.

O. P. Acharya, A. Patnaik, and S. N. Sinha, “Comparative study of bio-inspired optimization techniques in antenna array failure compensation,” in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Orlando, FL, USA, pp. 1232-1233. doi: 10.1109/APS.2013. 6711276, 2013.

R. Lovato and X. Gong, “Phased antenna array beamforming using convolutional neural networks,“ in IEEE Int. Symp. Antennas Propagat. and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, pp. 1247-1248. doi: 10.1109/APUSNCURSINRSM.2019. 8888573, 2019.

J. H. Kim and S. W. Choi, “A deep learning-based approach for radiation pattern synthesis of an array antenna,” IEEE Access, vol. 8, pp. 226059–226063, doi: 10.1109/ACCESS.2020. 3045464, Dec. 2020.

G. A. Harris, “Reconfigurable array control via convolutional neural networks,” M.S. Thesis, Dept. Elect. Eng., Wright State Univ., Dayton, OH, 2021.

D. H. Werner, M. D. Gregory, and P. L. Werner, “A review of high performance ultra-wideband antenna array layout design,” in 8th Eur. Conf. Antennas Propag. (EuCAP 2014), The Hague, Netherlands, pp. 3128-3131, doi: 10. 1109/EuCAP .2014.6902490, 2014.

M. D. Gregory, F. A. Namin, and D. H. Werner, “Exploiting rotational symmetry for the design of ultra-wideband planar phased array layouts,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 176-184, doi: 10.1109/TAP .2012.2220107, Jan. 2013.

C. M. Stamper, “Reconfigurable antenna array using the PIN-diode-switched printed square spiral element,” M.S. Thesis, Dept. Elect. Eng., Wright State Univ., Dayton, OH, 2021.

G. H. Huff, J. Feng, S. Zhang, and J. T. Bernhard, “A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, pp. 57-59, doi: 10.1109/LMWC.2003. 808714, Feb. 2003.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016.

M. Martinez-Ramon, A. Gupta, and J. L. Rojo-Álvarez, Machine Learning Applications in Electromagnetics and Antenna Array Processing, Artech House, Norwood, MA, 2020.

Downloads

Published

2023-06-30

How to Cite

[1]
G. A. . Harris, C. M. . Stamper, and M. A. . Saville, “Convolutional Neural Network for Array Size Selection of a Dual-band Reconfigurable Array”, ACES Journal, vol. 38, no. 06, pp. 400–408, Jun. 2023.