Meshless Radial Basis Functions Method for Solving Hallen’s Integral Equation

Authors

  • Sheng-Jian Lai
  • Bing-Zhong Wang
  • Yong Duan

Keywords:

meshless method

Abstract

This paper introduced a meshless method based on radial basis function (RBF) interpolation to solve Hallen’s integral equation (HIE) of the thin wire. The unknown current Iz(z) is interpolated by RBF at the center nodes and point matching method is applied to HIE at the collocation nodes. To validate the present method, the input impedance and induced current of dipole antenna are computed with the r5-RBF and Wu’s RBF, respectively. The results show that the present method is a steady numerical approach for solving HIE.

Downloads

Download data is not yet available.

References

K. K. Mei, “On the Integral Equations of Thin Wire

Antennas,” IEEE Trans. Antennas Propag., vol. 13, no. 3,

pp. 374-378, May 1965.

K. F. A. Hussein, “Accurate Computational Algorithm for

Calculation of Input Impedance of Antennas of

Arbitrarily Shaped Conducting Surfaces,”Applied Computational Electromagnetic Society (ACES) Journal,

vol. 22, no. 3, pp. 350–362, November 2007.

R. A. Abd-Alhameed, P. S. Excell, M. A. Mangoud,

“Broadband Antenna Response Using Hybrid Technique

Combining Frequency Domain MoM and FDTD,”

Applied Computational Electromagnetic Society (ACES)

Journal, vol. 20, no. 1, pp. 70–77, Match 2005.

G. Miano, L. Verolino, and V. G. Vaccaro,“A Hybrid

Procedure to Solve Hallen’s Problem,” IEEE Trans.

Electromagn. Compat., vol. 38, no. 3, pp. 409-412, Aug.

G. Fikioris and T. T. Wu,“On the Application of

Numerical Methods to Hallen’s Equation,” IEEE Trans.

Antennas Propag., vol. 49, no. 3, pp. 383-392, Mar. 2001.

A. F. Peterson and M. M. Bibby, “High-Order Numerical

Solutions of the MFIE for the Linear Dipole,” IEEE Trans.

Antennas Propag., vol. 52, no. 10, pp. 2684-2691, Oct.

G. Fikioris and A. Michalopoulou, “On the Use of

Entire-Domain Basis Functions in Galerkin Methods

Applied to Certain Integral Equations for Wire Antennas

with the Approximate Kernel,” IEEE Trans. Electromagn.

Compat., vol. 51, no. 2, pp. 409-412, May 2009.

G. E. Fasshauer, Meshfree Approximation Methods with

MATLAB, Singapore: World Scientific Publishing,

Chapter 1, 2007.

R. K. Gordon and W. Elliott Hutchcraft, “The Use of

Multiquadric Radial Basis Functions in Open Region

Problems,” Applied Computational Electromagnetic

Society (ACES) Journal, vol. 21, no. 2, pp. 127–134, July

S. J. Lai, B.Z. Wang, and Y. Duan,“Meshless Radial

Basis Function Method for Transient Electromagnetic

Computations,” IEEE Trans. Magn., vol. 44, no. 10, pp.

–2295, 2008.

X. F. Liu, B. Z. Wang, and S.J. Lai, “Element-Free

Galerkin Method for Transient Electromagnetic Field

Simulation,” Microwave and Optical Technology Letters,

vol. 50, no. 1, pp. 134-138, Jan. 2008.

W. L. Nicomedes, R. C. Mesquita, and F. J. S. Moreira,

“2-D Scattering Integral Field Equation Solution through

an IMLS Meshless-Based Approach,” IEEE Trans.

Magn., vol. 46, no. 8, pp. 2783–2486, 2010.

D. Poljak, B. Jajac, and N. Kovac,“Transient Radiation

of a Thin Wire Antenna Buried in aDielectric Half

Space,” Int. Ser. Adv. Boundary Elem.., vol. 13, pp. 449–

, 2002.

E. J. Kansa, “Multiqudrics - A Scattered Data

Approximation Scheme with Applications to

Computational Fluid-Dynamics - I Surface

Approximations and Partial Derivatives,” Computer

Math. Appli., vol. 19, pp. 127-145, 1990.

W. C. Gibson, The method of moments in

electromagnetics, New York: Chapman & Hall/CRC,

Chapter 4, 2008.

Z. M. Wu,“Compactly Supported Positive Definite

Radial Functions,” Adv. Comput. Math., vol. 4, pp.

-292, 1995.

Downloads

Published

2022-05-02

How to Cite

[1]
S.-J. . Lai, B.-Z. . Wang, and Y. . Duan, “Meshless Radial Basis Functions Method for Solving Hallen’s Integral Equation”, ACES Journal, vol. 27, no. 1, pp. 9–13, May 2022.

Issue

Section

General Submission