Meshless Radial Basis Functions Method for Solving Hallen’s Integral Equation
Keywords:
meshless methodAbstract
This paper introduced a meshless method based on radial basis function (RBF) interpolation to solve Hallen’s integral equation (HIE) of the thin wire. The unknown current Iz(z) is interpolated by RBF at the center nodes and point matching method is applied to HIE at the collocation nodes. To validate the present method, the input impedance and induced current of dipole antenna are computed with the r5-RBF and Wu’s RBF, respectively. The results show that the present method is a steady numerical approach for solving HIE.
Downloads
References
K. K. Mei, “On the Integral Equations of Thin Wire
Antennas,” IEEE Trans. Antennas Propag., vol. 13, no. 3,
pp. 374-378, May 1965.
K. F. A. Hussein, “Accurate Computational Algorithm for
Calculation of Input Impedance of Antennas of
Arbitrarily Shaped Conducting Surfaces,”Applied Computational Electromagnetic Society (ACES) Journal,
vol. 22, no. 3, pp. 350–362, November 2007.
R. A. Abd-Alhameed, P. S. Excell, M. A. Mangoud,
“Broadband Antenna Response Using Hybrid Technique
Combining Frequency Domain MoM and FDTD,”
Applied Computational Electromagnetic Society (ACES)
Journal, vol. 20, no. 1, pp. 70–77, Match 2005.
G. Miano, L. Verolino, and V. G. Vaccaro,“A Hybrid
Procedure to Solve Hallen’s Problem,” IEEE Trans.
Electromagn. Compat., vol. 38, no. 3, pp. 409-412, Aug.
G. Fikioris and T. T. Wu,“On the Application of
Numerical Methods to Hallen’s Equation,” IEEE Trans.
Antennas Propag., vol. 49, no. 3, pp. 383-392, Mar. 2001.
A. F. Peterson and M. M. Bibby, “High-Order Numerical
Solutions of the MFIE for the Linear Dipole,” IEEE Trans.
Antennas Propag., vol. 52, no. 10, pp. 2684-2691, Oct.
G. Fikioris and A. Michalopoulou, “On the Use of
Entire-Domain Basis Functions in Galerkin Methods
Applied to Certain Integral Equations for Wire Antennas
with the Approximate Kernel,” IEEE Trans. Electromagn.
Compat., vol. 51, no. 2, pp. 409-412, May 2009.
G. E. Fasshauer, Meshfree Approximation Methods with
MATLAB, Singapore: World Scientific Publishing,
Chapter 1, 2007.
R. K. Gordon and W. Elliott Hutchcraft, “The Use of
Multiquadric Radial Basis Functions in Open Region
Problems,” Applied Computational Electromagnetic
Society (ACES) Journal, vol. 21, no. 2, pp. 127–134, July
S. J. Lai, B.Z. Wang, and Y. Duan,“Meshless Radial
Basis Function Method for Transient Electromagnetic
Computations,” IEEE Trans. Magn., vol. 44, no. 10, pp.
–2295, 2008.
X. F. Liu, B. Z. Wang, and S.J. Lai, “Element-Free
Galerkin Method for Transient Electromagnetic Field
Simulation,” Microwave and Optical Technology Letters,
vol. 50, no. 1, pp. 134-138, Jan. 2008.
W. L. Nicomedes, R. C. Mesquita, and F. J. S. Moreira,
“2-D Scattering Integral Field Equation Solution through
an IMLS Meshless-Based Approach,” IEEE Trans.
Magn., vol. 46, no. 8, pp. 2783–2486, 2010.
D. Poljak, B. Jajac, and N. Kovac,“Transient Radiation
of a Thin Wire Antenna Buried in aDielectric Half
Space,” Int. Ser. Adv. Boundary Elem.., vol. 13, pp. 449–
, 2002.
E. J. Kansa, “Multiqudrics - A Scattered Data
Approximation Scheme with Applications to
Computational Fluid-Dynamics - I Surface
Approximations and Partial Derivatives,” Computer
Math. Appli., vol. 19, pp. 127-145, 1990.
W. C. Gibson, The method of moments in
electromagnetics, New York: Chapman & Hall/CRC,
Chapter 4, 2008.
Z. M. Wu,“Compactly Supported Positive Definite
Radial Functions,” Adv. Comput. Math., vol. 4, pp.
-292, 1995.