Distributed-Memory Parallelization of an Explicit Time-Domain Volume Integral Equation Solver on Blue Gene/P

Authors

  • Ahmed Al-Jarro Al-Jarro Division of Physical Sciences and Engineering King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
  • Mark Cheeseman KAUST Supercomputing Laboratory King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
  • Hakan Bağcı Division of Physical Sciences and Engineering King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia

Keywords:

Distributed-Memory Parallelization of an Explicit Time-Domain Volume Integral Equation Solver on Blue Gene/P

Abstract

Two distributed-memory schemes for efficiently parallelizing the explicit marching-onin- time based solution of the time domain volume integral equation on the IBM Blue Gene/P platform are presented. In the first scheme, each processor stores the time history of all source fields and only the computationally dominant step of the tested field computations is distributed among processors. This scheme requires all-to-all global communications to update the time history of the source fields from the tested fields. In the second scheme, the source fields as well as all steps of the tested field computations are distributed among processors. This scheme requires sequential global communications to update the time history of the distributed source fields from the tested fields. Numerical results demonstrate that both schemes scale well on the IBM Blue Gene/P platform and the memoryefficient second scheme allows for the characterization of transient wave interactions on composite structures discretized using three million spatial elements without an acceleration algorithm.

Downloads

Download data is not yet available.

References

N. T. Gres, A. A. Ergin, E. Michielssen, and B.

Shanker “Volume-Integral-Equation-Based

Analysis of Transient Electromagnetic Scattering

from Three-Dimensional Inhomogeneous

Dielectric Objects,” Radio Sci., vol. 36, no. 3, pp.

-386, May 2001.

B. Shanker, K. Aygun, and E. Michielssen, “Fast

Analysis of Transient Scattering from Lossy

Inhomogeneous Dielectric Bodies,” Radio Sci.,

vol. 39, pp. 1-14, Mar. 2004.

G. Kobidze, J. Gao, B. Shanker, and E.

Michielssen, “A Fast Time Domain Integral

Equation Based Scheme for Analyzing Scattering

from Dispersive Objects,” IEEE Trans. Antennas

Propag., vol. 53, no. 3, pp. 1215-1226, Mar. 2005.

Al-Jarro, P. Sewell, T. M. Benson, A. Vukovic,

and J Paul, “TransientTime-Dependent Electric

Field of Dielectric Bodies using the Volterra

Integral Equation in Tthree Dimensions,”

Progress Electromag. Res., vol. 110, pp. 179-197,

A. Al-Jarro and H. Bagci, “APredictor-Corrector

Scheme for Solving the VolterraIntegral

Equation,” The XXX General Assembly and

Scientific Symposium of URSI, Istanbul, Aug.

A. Al-Jarro, M. A. Salem, H. Bagci, T. M.

Benson, P. Sewell, and A. Vukovic,“Explicit

Solution of theTime Domain Volume Integral

Equation using aStable Predictor-Corrector

Scheme,” submitted for publication, 2011.

P. P. Silvester and R. L.Ferrari, Finite Elements

for Electrical Engineers. Cambridge, U.K,

Cambridge University Press, 1990.

F. L. Teixeira, “ASummary Review on 25 Years

of Progress and Future Challenges in FDTD and

FETD Techniques,” Applied Computational

Electromagnetics Society (ACES) Journal, vol. 25,

no. 1, pp. 1-14, Jan. 2010.

A. Taflove and Susan C. Hagness, Computational

Electrodynamics: The Finite Difference Time

Domain Method, Artech House, 2005.

A. E. Yilmaz, J. M. Jin, and E. Michielssen,

“Time Domain Adaptive Integral Method for

Surface Integral Equations,” IEEE Trans.

Antennas Propag., vol. 52, no. 10, pp. 2692-2708,

Oct. 2004.

A. E. Yilmaz, J. M. Jin, and E. Michielssen, “A

Parallel FFT Accelerated Transient Field-Circuit

Simulator,” IEEE Trans. Microw. Theory Tech.,

vol. 53, no. 9, pp. 2851-2865, Sep. 2005.

H. Bagci, A. E. Yilmaz, J.-M. Jin, and E.

Michielssen, “Fast andRigorous Analysis of

EMC/EMI Phenomena on Electrically Large and

Complex Cable-Loaded Structures,” IEEE Trans.

Electromagn. Comp., vol. 49, no. 9, pp. 361-381,

May 2007.

H. Bagci, A. E. Yilmaz, and E.Michielssen, “An

FFT-Accelerated Time-Domain Multiconductor

Transmission Line Simulator,” IEEE Trans.

Electromagn. Comp., vol. 52, no. 1, pp. 199-214,

Feb. 2010.

G. Manara, A. Monorchio, and R. Reggiannini, “A

Space-Time Discretization Criterion for aStable

Time-Marching Solution of theElectric Field

Integral Equation,” IEEE Trans. Antennas

Propag., vol. 45, no. 3, pp. 527-532, Mar. 1997.

D. S. Weile, G. Pisharody, N.-W. Chen, B.

Shanker, and E. Michielssen, “ANovel Scheme

for the Solution of theTime-Domain Integral

Equations of Electromagnetics,” IEEE Trans.

Antennas Propag., vol. 52, no.1, pp. 283-295, Jan.

Y. Shi, M. Xia, R. Chen, E. Michielssen, and M.

Lu, “Stable Electric Field TDIE Solvers via

Quasi-Exact Evaluation of MOTMatrix

Elements,” IEEE Trans. Antennas Propag., vol.

, no. 2, pp. 574-585, Feb. 2011.

H. A. Ulkuand A. A. Ergin, “Application of

Analytical Retarded-Time Potential Expressions

to the Solution of Time Domain Integral

Equations,” IEEE Trans. Antennas Propag., vol.

, no. 11, pp. 4123- 4131, Nov. 2011.

F. P. Andriulli, H. Bagci, F. Vipiana, G. Vecchi,

and E. Michielssen,“A Marching-on-in-Time

Hierarchical Scheme for theTime Domain

Electric Field Integral Equation,” IEEE Trans.

Antennas Propag., vol. 55, no. 12, pp. 3734-3738,

Dec. 2007.

F. P. Andriulli, H. Bagci, F. Vipiana, G. Vecchi,

and E. Michielssen, “Analysis andRegularization

of the TD-EFIE Low-Frequency Breakdown,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp.

-2046, July 2009.

H. Bagci, F. P. Andriulli, F. Vipiana, G. Vecchi,

and E. Michielssen,“A Well-Conditioned

Integral-Equation Formulation for Efficient

Transient Analysis of Electrically Small

Microelectronic Devices,” IEEE Trans. Adv.

Packag., vol. 33, no. 2, pp. 468-480, May 2010.

F. Wei and A. E. Yilmaz, “AHybrid Message

Passing/Shared Memory Parallelization of the

Adaptive Integral Method for Multi-Core

Clusters,” Parallel Comp., vol. 37, no. 6-7, pp.

-301, June-July 2011.

X. Duan, X. Chen, K. Huang,and H. Zhou, “A

High Performance Parallel FDTD Based on

Winsock and Multi-Threading on a PC-Cluster,”

Applied Computational Electromagnetics Society

(ACES) Journal, vol. 26, no. 3, pp.241-249,

March 2011.

J. E. Lump, S. K. Mazumder, and S. D. Gedney,

“Performance Modeling of theFinite-Difference

Time-Domain Method on Parallel Systems,”

Applied Computational Electromagnetics Society

(ACES) Journal, vol. 19, no. 2, pp. 147-159, July

J. He, A. Karlsson, J. Swartling, and S.

Andersson-Engels, “Light Scattering by Multiple

Red Blood Cells,” J. Opt. Soc. Am. A, vol. 21, no.

, pp. 1953-1961, Oct. 2004.

J. Q. Lu, P. Yang, and X.H. Hu, “Simulations of

Light Scattering from a Biconcave Red Blood Cell

using the Finite-Difference Time-Domain

Method,” J. Biomed Opt., vol. 10, no. 2, pp.

-10, Mar./Apr. 2005.

O. Ergul, A. Arslan-Ergul, and L. Gurel,

“Computational Study of Scattering from Healthy

and Diseased Red Blood Cells using Surface

Integral Equations and theMultilevel Fast

Multipole Algorithm,” J. Biomed. Opt., vol. 15,

no. 4, pp. 045004-8, July/Aug. 2010.

J. Waldvogel, “The NewtonianPotential of

Homogeneous Cube,” J. Applied Math. Phys., vol.

, no. 6, pp. 867-871, 1979.

Downloads

Published

2022-05-02

How to Cite

[1]
A. A.-J. Al-Jarro, M. . Cheeseman, and H. . Bağcı, “Distributed-Memory Parallelization of an Explicit Time-Domain Volume Integral Equation Solver on Blue Gene/P”, ACES Journal, vol. 27, no. 2, pp. 132–144, May 2022.

Issue

Section

General Submission