Distributed-Memory Parallelization of an Explicit Time-Domain Volume Integral Equation Solver on Blue Gene/P
Keywords:
Distributed-Memory Parallelization of an Explicit Time-Domain Volume Integral Equation Solver on Blue Gene/PAbstract
Two distributed-memory schemes for efficiently parallelizing the explicit marching-onin- time based solution of the time domain volume integral equation on the IBM Blue Gene/P platform are presented. In the first scheme, each processor stores the time history of all source fields and only the computationally dominant step of the tested field computations is distributed among processors. This scheme requires all-to-all global communications to update the time history of the source fields from the tested fields. In the second scheme, the source fields as well as all steps of the tested field computations are distributed among processors. This scheme requires sequential global communications to update the time history of the distributed source fields from the tested fields. Numerical results demonstrate that both schemes scale well on the IBM Blue Gene/P platform and the memoryefficient second scheme allows for the characterization of transient wave interactions on composite structures discretized using three million spatial elements without an acceleration algorithm.
Downloads
References
N. T. Gres, A. A. Ergin, E. Michielssen, and B.
Shanker “Volume-Integral-Equation-Based
Analysis of Transient Electromagnetic Scattering
from Three-Dimensional Inhomogeneous
Dielectric Objects,” Radio Sci., vol. 36, no. 3, pp.
-386, May 2001.
B. Shanker, K. Aygun, and E. Michielssen, “Fast
Analysis of Transient Scattering from Lossy
Inhomogeneous Dielectric Bodies,” Radio Sci.,
vol. 39, pp. 1-14, Mar. 2004.
G. Kobidze, J. Gao, B. Shanker, and E.
Michielssen, “A Fast Time Domain Integral
Equation Based Scheme for Analyzing Scattering
from Dispersive Objects,” IEEE Trans. Antennas
Propag., vol. 53, no. 3, pp. 1215-1226, Mar. 2005.
Al-Jarro, P. Sewell, T. M. Benson, A. Vukovic,
and J Paul, “TransientTime-Dependent Electric
Field of Dielectric Bodies using the Volterra
Integral Equation in Tthree Dimensions,”
Progress Electromag. Res., vol. 110, pp. 179-197,
A. Al-Jarro and H. Bagci, “APredictor-Corrector
Scheme for Solving the VolterraIntegral
Equation,” The XXX General Assembly and
Scientific Symposium of URSI, Istanbul, Aug.
A. Al-Jarro, M. A. Salem, H. Bagci, T. M.
Benson, P. Sewell, and A. Vukovic,“Explicit
Solution of theTime Domain Volume Integral
Equation using aStable Predictor-Corrector
Scheme,” submitted for publication, 2011.
P. P. Silvester and R. L.Ferrari, Finite Elements
for Electrical Engineers. Cambridge, U.K,
Cambridge University Press, 1990.
F. L. Teixeira, “ASummary Review on 25 Years
of Progress and Future Challenges in FDTD and
FETD Techniques,” Applied Computational
Electromagnetics Society (ACES) Journal, vol. 25,
no. 1, pp. 1-14, Jan. 2010.
A. Taflove and Susan C. Hagness, Computational
Electrodynamics: The Finite Difference Time
Domain Method, Artech House, 2005.
A. E. Yilmaz, J. M. Jin, and E. Michielssen,
“Time Domain Adaptive Integral Method for
Surface Integral Equations,” IEEE Trans.
Antennas Propag., vol. 52, no. 10, pp. 2692-2708,
Oct. 2004.
A. E. Yilmaz, J. M. Jin, and E. Michielssen, “A
Parallel FFT Accelerated Transient Field-Circuit
Simulator,” IEEE Trans. Microw. Theory Tech.,
vol. 53, no. 9, pp. 2851-2865, Sep. 2005.
H. Bagci, A. E. Yilmaz, J.-M. Jin, and E.
Michielssen, “Fast andRigorous Analysis of
EMC/EMI Phenomena on Electrically Large and
Complex Cable-Loaded Structures,” IEEE Trans.
Electromagn. Comp., vol. 49, no. 9, pp. 361-381,
May 2007.
H. Bagci, A. E. Yilmaz, and E.Michielssen, “An
FFT-Accelerated Time-Domain Multiconductor
Transmission Line Simulator,” IEEE Trans.
Electromagn. Comp., vol. 52, no. 1, pp. 199-214,
Feb. 2010.
G. Manara, A. Monorchio, and R. Reggiannini, “A
Space-Time Discretization Criterion for aStable
Time-Marching Solution of theElectric Field
Integral Equation,” IEEE Trans. Antennas
Propag., vol. 45, no. 3, pp. 527-532, Mar. 1997.
D. S. Weile, G. Pisharody, N.-W. Chen, B.
Shanker, and E. Michielssen, “ANovel Scheme
for the Solution of theTime-Domain Integral
Equations of Electromagnetics,” IEEE Trans.
Antennas Propag., vol. 52, no.1, pp. 283-295, Jan.
Y. Shi, M. Xia, R. Chen, E. Michielssen, and M.
Lu, “Stable Electric Field TDIE Solvers via
Quasi-Exact Evaluation of MOTMatrix
Elements,” IEEE Trans. Antennas Propag., vol.
, no. 2, pp. 574-585, Feb. 2011.
H. A. Ulkuand A. A. Ergin, “Application of
Analytical Retarded-Time Potential Expressions
to the Solution of Time Domain Integral
Equations,” IEEE Trans. Antennas Propag., vol.
, no. 11, pp. 4123- 4131, Nov. 2011.
F. P. Andriulli, H. Bagci, F. Vipiana, G. Vecchi,
and E. Michielssen,“A Marching-on-in-Time
Hierarchical Scheme for theTime Domain
Electric Field Integral Equation,” IEEE Trans.
Antennas Propag., vol. 55, no. 12, pp. 3734-3738,
Dec. 2007.
F. P. Andriulli, H. Bagci, F. Vipiana, G. Vecchi,
and E. Michielssen, “Analysis andRegularization
of the TD-EFIE Low-Frequency Breakdown,” IEEE Trans. Antennas Propag., vol. 57, no. 7, pp.
-2046, July 2009.
H. Bagci, F. P. Andriulli, F. Vipiana, G. Vecchi,
and E. Michielssen,“A Well-Conditioned
Integral-Equation Formulation for Efficient
Transient Analysis of Electrically Small
Microelectronic Devices,” IEEE Trans. Adv.
Packag., vol. 33, no. 2, pp. 468-480, May 2010.
F. Wei and A. E. Yilmaz, “AHybrid Message
Passing/Shared Memory Parallelization of the
Adaptive Integral Method for Multi-Core
Clusters,” Parallel Comp., vol. 37, no. 6-7, pp.
-301, June-July 2011.
X. Duan, X. Chen, K. Huang,and H. Zhou, “A
High Performance Parallel FDTD Based on
Winsock and Multi-Threading on a PC-Cluster,”
Applied Computational Electromagnetics Society
(ACES) Journal, vol. 26, no. 3, pp.241-249,
March 2011.
J. E. Lump, S. K. Mazumder, and S. D. Gedney,
“Performance Modeling of theFinite-Difference
Time-Domain Method on Parallel Systems,”
Applied Computational Electromagnetics Society
(ACES) Journal, vol. 19, no. 2, pp. 147-159, July
J. He, A. Karlsson, J. Swartling, and S.
Andersson-Engels, “Light Scattering by Multiple
Red Blood Cells,” J. Opt. Soc. Am. A, vol. 21, no.
, pp. 1953-1961, Oct. 2004.
J. Q. Lu, P. Yang, and X.H. Hu, “Simulations of
Light Scattering from a Biconcave Red Blood Cell
using the Finite-Difference Time-Domain
Method,” J. Biomed Opt., vol. 10, no. 2, pp.
-10, Mar./Apr. 2005.
O. Ergul, A. Arslan-Ergul, and L. Gurel,
“Computational Study of Scattering from Healthy
and Diseased Red Blood Cells using Surface
Integral Equations and theMultilevel Fast
Multipole Algorithm,” J. Biomed. Opt., vol. 15,
no. 4, pp. 045004-8, July/Aug. 2010.
J. Waldvogel, “The NewtonianPotential of
Homogeneous Cube,” J. Applied Math. Phys., vol.
, no. 6, pp. 867-871, 1979.