On-The-Fly Mesh Generation for a High Performance Physical Optics Radar Backscattering Simulator
Keywords:
On-The-Fly Mesh Generation for a High Performance Physical Optics Radar Backscattering SimulatorAbstract
In this paper, we present a radar backscattering simulator based on the method of physical optics (PO). Our simulation tool closely intertwines the tessellation of the simulation geometry with the physical optics method kernel, which enables on-the-fly refinement of input model data while still yielding high precision and computational performance. The algorithms for the physical optics method as well as the parallelization scheme will be presented. Also, performance comparisons will be shown and explained, both in regard to accuracy of the results and computation time.
Downloads
References
OpenMP.org – The OpenMP API specification
for parallel programming. [Online]. Available:
C. Balanis, Advanced Engineering Electro-
magnetics. Wiley, 1989.
E. Yamashita, Analysis Methods for Electro-
magnetic Wave Problems, ser. The Artech
House antenna library. Artech House, no. 2,
U. Jakobus, Intelligente Kombination
verschiedener numerischer Berech-nungsverfahren zur effizienten Analyse
elektromagnetischer Streuprobleme
unter besonderer Berücksichtigung der
Parallelverarbeitung. Shaker, 1999.
L. Felsen and N. Marcuvitz, Radiation and
Scattering of Waves, ser. IEEE Press series on
electromagnetic waves. IEEE Press, 1994.
L. Díaz and T. Milligan, Antenna Engineer-
ing using Physical Optics: Practical CAD
Techniques and Software, ser. Artech House
antenna library. Artech House, no. 1, 1996.
Python Programming Language – Of-
ficial Website. [Online]. Available:
S. Hegler, R. Hahnel, and D. Plettemeier,
“Implementation of a High Performance Nu-
merical Simulator for Radar Surface Echoes,”
in Proceedings of The 2nd International Multi-
Conference on Engineering and Technological
Innovation: IMETI 2009. International Insti-
tute of Informatics and Systemics, 2009.
M. Bader and C. Zenger, “Efficient Storage
and Processing of Adaptive Triangular Grids
Using Sierpinski Curves,” in Computational
Science – ICCS 2006, ser. Lecture Notes in
Computer Science, V. Alexandrov, G. van Al-
bada, P. Sloot, and J. Dongarra, Eds. Springer
Berlin / Heidelberg, vol. 3991, pp. 673–680,
GCC, the GNU Compiler Collection. [Online].
Available: http://gcc.gnu.org/
IEEE Task P754, IEEE 754-2008, Standard
for Floating-Point Arithmetic, Aug. 2008.
GCC 4.5.3 Manual. [Online]. Available:
http://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/
J.-F. Nouvel, A. Herique, W. Kofman, and
A. Safaeinili, “Radar Signal Simulation: Sur-
face Modeling with the Facet Method,” in
Radio Science, vol. 39, 2004.