On-The-Fly Mesh Generation for a High Performance Physical Optics Radar Backscattering Simulator

Authors

  • Sebastian Hegle Communications Laboratory Dresden University of Technology, Dresden, 01127, Germany
  • Ronny Hahne Communications Laboratory Dresden University of Technology, Dresden, 01127, Germany
  • Dirk Plettemeier Communications Laboratory Dresden University of Technology, Dresden, 01127, Germany

Keywords:

On-The-Fly Mesh Generation for a High Performance Physical Optics Radar Backscattering Simulator

Abstract

In this paper, we present a radar backscattering simulator based on the method of physical optics (PO). Our simulation tool closely intertwines the tessellation of the simulation geometry with the physical optics method kernel, which enables on-the-fly refinement of input model data while still yielding high precision and computational performance. The algorithms for the physical optics method as well as the parallelization scheme will be presented. Also, performance comparisons will be shown and explained, both in regard to accuracy of the results and computation time.

Downloads

Download data is not yet available.

References

OpenMP.org – The OpenMP API specification

for parallel programming. [Online]. Available:

http://openmp.org/wp/

C. Balanis, Advanced Engineering Electro-

magnetics. Wiley, 1989.

E. Yamashita, Analysis Methods for Electro-

magnetic Wave Problems, ser. The Artech

House antenna library. Artech House, no. 2,

U. Jakobus, Intelligente Kombination

verschiedener numerischer Berech-nungsverfahren zur effizienten Analyse

elektromagnetischer Streuprobleme

unter besonderer Berücksichtigung der

Parallelverarbeitung. Shaker, 1999.

L. Felsen and N. Marcuvitz, Radiation and

Scattering of Waves, ser. IEEE Press series on

electromagnetic waves. IEEE Press, 1994.

L. Díaz and T. Milligan, Antenna Engineer-

ing using Physical Optics: Practical CAD

Techniques and Software, ser. Artech House

antenna library. Artech House, no. 1, 1996.

Python Programming Language – Of-

ficial Website. [Online]. Available:

http://www.python.org

S. Hegler, R. Hahnel, and D. Plettemeier,

“Implementation of a High Performance Nu-

merical Simulator for Radar Surface Echoes,”

in Proceedings of The 2nd International Multi-

Conference on Engineering and Technological

Innovation: IMETI 2009. International Insti-

tute of Informatics and Systemics, 2009.

M. Bader and C. Zenger, “Efficient Storage

and Processing of Adaptive Triangular Grids

Using Sierpinski Curves,” in Computational

Science – ICCS 2006, ser. Lecture Notes in

Computer Science, V. Alexandrov, G. van Al-

bada, P. Sloot, and J. Dongarra, Eds. Springer

Berlin / Heidelberg, vol. 3991, pp. 673–680,

GCC, the GNU Compiler Collection. [Online].

Available: http://gcc.gnu.org/

IEEE Task P754, IEEE 754-2008, Standard

for Floating-Point Arithmetic, Aug. 2008.

GCC 4.5.3 Manual. [Online]. Available:

http://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/

J.-F. Nouvel, A. Herique, W. Kofman, and

A. Safaeinili, “Radar Signal Simulation: Sur-

face Modeling with the Facet Method,” in

Radio Science, vol. 39, 2004.

Downloads

Published

2022-05-02

How to Cite

[1]
S. . Hegle, R. . Hahne, and D. . Plettemeier, “On-The-Fly Mesh Generation for a High Performance Physical Optics Radar Backscattering Simulator”, ACES Journal, vol. 27, no. 2, pp. 145–151, May 2022.

Issue

Section

General Submission