Surface Integral Equation Solvers for Large-Scale Conductors, Metamaterials and Plasmonic Nanostructures

Authors

  • José M. Taboada Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
  • Javier Rivero Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
  • Luis Landesa Escuela Politécnica, University of Extremadura, 10003 Cáceres, Spain
  • Marta G. Araújo E.E. Telecomunicación, University of Vigo, 36310, Spain
  • Fernando Obelleiro E.E. Telecomunicación, University of Vigo, 36310, Spain

Keywords:

Surface Integral Equation Solvers for Large-Scale Conductors, Metamaterials and Plasmonic Nanostructures

Abstract

Surface integral equation (SIE) approaches for the accurate solution of different problems in computational electromagnetics are addressed. First, an efficient message passing interface (MPI)/OpenMP parallel implementation of the multilevel fast multipole algorithm-fast Fourier transform (MLFMA-FFT) is presented for the solution of large-scale conducting bodies. By combining the high scalability of the fast multipole method-FFT (FMM-FFT) with the high efficiency of MLFMA, challenging problems up to one billion unknowns are solved using a parallel supercomputer. Second, looking for the extension of these rigorous approaches to new demanded areas, the SIE method is successfully applied to the solution of left-handed metamaterials and plasmonic nanostructures. Numerical examples are presented to confirm the validity and versatility of this approach for the accurate resolution of problems in the context of leading-edge nanoscience and nanotechnology applications.

Downloads

Download data is not yet available.

References

R. F. Harrington,Field Computation by Moment

Method. New York: IEEE Press, 1993.

S. M. Rao, D. R. Wilton, and A. W. Glisson,

“Electromagnetic Scattering by Surfaces of

Arbitrary Shape,” IEEE Trans. Antennas Propag.,

vol. 30, pp. 409–418, May 1982.

R. Coifman, V. Rokhlin, and S. Wandzura, “The

Fast Multipole Method for the Wave Equation: A

Pedestrian Prescription,” IEEE Trans. Antennas

Propagat. Mag., vol. 35, no. 6, pp. 7–12, June

J. Song and W. C. Chew, “MultilevelFast

Multipole Algorithm for Solving Combined Eld

Integral Equations of Electromagnetic Scattering,”

Microw. Opt. Tech. Lett., vol. 10, pp. 14–19,

J. Song, C. Lu, and W. C.Chew, “Multilevel Fast

Multipole Algorithm for Electromagnetic

Scattering by Large Complex Objects,” IEEE

Trans. Antennas Propagat., vol. 45, pp. 1488–

, Oct. 1997.

S. Velamparambil, W. C. Chew, and J. M. Song,

“10 Million Unknowns: Is itThat Big?,” IEEE

Antennas Propagat. Mag., vol. 45, no. 3, pp. 43–

, Apr. 2003.

S. Velamparambil and W. C. Chew, “Analysis and

Performance of a Distributed Memory Multilevel

Fast Multipole Algorithm,” IEEE Trans. Antennas

Propagat., vol. 53, no. 8, pp. 2719–2727, 2005.

Ö. Ergül and L. Gürel, “Efficient Parallelization of

the Multilevel Fast Multipole Algorithm for the

Solution of Large-Scale Scattering Problems,”

IEEE Trans. Antennas Propagat., vol. 56, no. 8,

pp. 2335–2345, Aug. 2008.

Ö. Ergül and L. Gürel, “A Hierarchical

Partitioning Strategy for anEfficient

Parallelization of theMultilevel Fast Multipole

Algorithm,” IEEE Trans. Antennas Propagat.,

vol. 57, no. 6, pp. 1740–1750, Jun. 2009.

H. Zhao, J. Hu,and Z. Nie, “Parallelization of

MLFMA with Composite Load Partition Criteria

and Asynchronous Communication,”Applied

Computational Electromagnetics Society (ACES)

Journal, vol. 25, no. 2, pp. 167– 173, February

H. Fangjing, N. Zaiping, and H. Jun, “An Efficient

Parallel Multilevel Fast Multipole Algorithm for

Large-scale Scattering Problems,”Applied

Computational Electromagnetics Society (ACES)

Journal, vol. 25, no. 4, pp. 381 – 387, April 2010.

M. Ujaldon, “Using GPUs for Accelerating

Electromagnetic Simulations,” Applied

Computational Electromagnetics Society (ACES)

Journal, vol. 25, no. 4, pp. 294 – 302, April 2010.

Z. N. Jiang, Z. H. Fan, D. Z. Ding, R. S. Chen,

and K. W. Leung, “Preconditioned MDA-SVD-

MLFMA for Analysis of Multi-Scale Problems,”

Applied Computational Electromagnetics Society

(ACES) Journal, vol. 25, no. 11, pp. 914– 925,

November 2010.

N. Nakashima, S. Fujino,and M. Tateiba,

“Performance Evaluation of State-of-the-Art

Linear Iterative Solvers Based on IDR Theorem

for Large Scale Electromagnetic Multiple

Scattering Simulations,” Applied Computational

Electromagnetics Society (ACES) Journal, vol. 26,

no. 1, pp. 37 – 44, January 2011.

R. Wagner, J. Song, and W. C. Chew, “Monte

Carlo Simulation of Electromagnetic Scattering

from Two-Dimensional Random Rough

Surfaces,” IEEE Trans. Antennas Propagat., vol.

, no. 2, pp. 235–245, Feb. 1997.

C. Waltz, K. Sertel, M. A. Carr, B. C. Usner, and

J. L.Volakis, “MassivelyParallel Fast Multipole

Method Solutions of Large Electromagnetic

Scattering Problems,” IEEE Trans. Antennas

Propagat., vol. 55, no. 6, pp. 1810–1816, 2007.

J. M. Taboada, L. Landesa, F. Obelleiro, J. L.

Rodriguez, J. M. Bertolo,M. G. Araujo, J. C.

Mourino, and A. Gomez, “High Scalability FMM-

FFT Electromagnetic Solver for Supercomputer

Systems,” IEEE Antennas Propagat. Mag., vol.

, no. 6, pp. 20–28, Dec. 2009.

J. M. Taboada, M. Araujo, J. M. Bertolo, L.

Landesa, F. Obelleiro, and J.L. Rodriguez,

“MLFMA-FFT Parallel Algorithm for the

Solution of Large Scale Problems in

Electromagnetic (Invited Paper),”Prog.

Electromagn. Res., PIER, vol. 105, pp. 15–30,

J. M. Taboada, L. Landesa, M. G. Araujo, J.

Bertolo, F. Obelleiro, J. L.Rodriguez, J. Rivero,

and G. Gajardo-Silva, “Supercomputer Solutions

of Extremely Large Problems in Electromagnetics:

from Ten Million to One Billion Unknowns,”

IEEE Europ. Conf. Antennas Propagat. (EuCAP),

Rome, Apr. 2011.

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro,

and I. García-Tuñon, “Surface Integral Equation

Formulation for theAnalysis of Left-Handed

Metamaterials,” Opt. Express, vol. 18, pp. 15876–

, 2010.

J. M. Taboada, J. Rivero, F. Obelleiro, M. G.

Araujo, and L. Landesa,“Method of Moments

Formulation for theAnalysis of Plasmonic

Nanooptical Antennas,” J. Opt. Soc. Am. A, vol.

, no. 7, July 2011.

P. Ylä-Oijala, M. Taskinen, and S. Järvenpää,

“Surface Integral Equation Formulations for

Solving Electromagnetic Scattering Problems with

Iterative Methods,” Radio Sci., vol. 40, no. 6,

RS6002, 2005.

Ö. Ergül and L. Gürel, “Comparison of Integral-

Equation Formulations for the Fast and Accurate

Solution of Scattering Problems Involving

Dielectric Objects with the Multilevel Fast

Multipole Algorithm,” IEEE Trans. Antennas

Propag., vol. 57, no. 1, pp. 176 – 187, Jan. 2009

J. R. Mautz and R. F. Harrington,

“Electromagnetic Scattering from a Homogeneous

Material Body of Revolution,” Arch. Elektron.

Uebertraeg., vol. 33, pp. 71–80, 1979.

P. Ylä-Oijala and M. Taskinen, “Application of

Combined Field Integral Equation for

Electromagnetic Scattering by Dielectric and

Composite Objects,” IEEE Trans. Antennas

Propagat., vol. 53, no. 3, pp. 1168–1173, 2005.

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H.

Schaubert, O. M. Al-Bundak, and C. M. Butler,

“Potential Integrals for Uniform and Linear

Source Distributions on Polygonal and Polyhedral

Domains,” IEEE Trans. Antennas Propagat., vol.

, no. 3, pp. 276–281, 1984.

R. E. Hodges and Y. Rahmat-Samii, “The

Evaluation of MFIEIntegrals with the use of

Vector Triangle Basis Functions,” Microw. Opt.

Technol. Lett., vol. 14, no. 1, pp. 9–14, 1997

P. Ylä-Oijala and M. Taskinen, “Calculation of

CFIE Impedance Matrix Elements with RWG and

n × RWG Functions,” IEEE Trans. Antennas

Propagat., vol. 51, no. 8, pp. 1837–1846, 2003.

M. G. Araújo, J. M. Taboada, J. Rivero, F.

Obelleiro, “Comparison of Surface Integral

Equations for Left-Handed Materials”, Prog.

Electromagn. Res., vol. 118, pp. 425 – 440, 2011.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst,

“Enhanced Directional Excitation and Emission of

Single Emitters by aNano-Optical Yagi-Uda

Antenna,” Opt. Express, vol. 16, pp. 10858–

, 2008.

Downloads

Published

2022-05-02

How to Cite

[1]
J. M. . Taboada, J. . Rivero, L. . Landesa, M. G. . Araújo, and F. . Obelleiro, “Surface Integral Equation Solvers for Large-Scale Conductors, Metamaterials and Plasmonic Nanostructures”, ACES Journal, vol. 27, no. 2, pp. 189–197, May 2022.

Issue

Section

General Submission