Scattering by a 2D Crack: The Meshfree Collocation Approach

Authors

  • B. Honarbakhsh Department of Electrical Engineering
  • A. Tavakoli Institute of Communications Technology and Applied Electromagnetics Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Keywords:

Scattering by a 2D Crack: The Meshfree Collocation Approach

Abstract

In this paper, the meshfree collocation method is applied to the problem of EM scattering by a 2D crack in a PEC plane. The hybrid PDE-IE formulation is the mathematical statement of the problem. Consequently, the geometry and the filling material of the cavity is arbitrary. Validations are based on convergence analysis, modal solution and measurement results. Furthermore, elliminating numerical integrations has lead to a fast, accurate, and general meshfree solution.

Downloads

Download data is not yet available.

References

K. Barkeshli, J. L. Volakis, “Scattering by a Two

Dimensional Groove in a Ground Plane,”

Technical report for NASA grant NAG-2-541, The

Radiation Laboratory, Department of Electrical

Engineering and Computer Science, The

University of Michigan, Ann Arbor, MI, 1989.

T. B. A. Senior, K. Sarabandi, and J. R. Natzke,

“Scattering by Narrow Gap,” IEEE Trans.

Antennas Propagat., vol. 38, no. 7, pp. 1102-1110,

J. Jin, The Finite Element Method in

Electromagnetics, Second Edition. John Wiley &

Sons, 2002.

M. Bozorgi and A. Tavakoli, “Polarimetric

Scattering from a 3-D Rectangular Crack in a PEC

Covered by a Dielectric Layer,” Applied

Computational Electromagnetics Society (ACES)

Journal, vol. 26, no. 6, pp. 502 - 511, June 2011.

F. Deek, M. El-Shenawee, “Microwave Detection

of Cracks in Buried Pipes using the Complex

frequency Technique,” Applied Computational

Electromagnetics Society (ACES) Journal, vol. 25,

no. 10, pp. 894 - 902, October 2010.

Richard K. Gordon, W. Elliott Hutchcraft, “The

Use of Multiquadric Radial Basis Functions in

Open Region Problems,” Applied Computational

Electromagnetics Society (ACES) Journal, vol. 21,

no. 2, pp. 127 - 134, July 2006.

G. R. Liu, Mesh Free Methods. CRC Press, 2003.

Y. Marechal, “Some Meshless Methods for

Electromagnetic Field Computations,” IEEE Trans.

Magn., vol. 34, no. 5, pp. 3351-3354, 1998.

C. Herault and Y. Marechal, “Boundary and

Interface Conditions in Meshless Methods,” IEEE

Trans. Magn., vol. 35, no. 3, pp. 1450-1453, 1999.

S. L. Ho, S. Yang, J. M. Machado, and H. C.

Wong, “Application of a Meshless Method in

Electromagnetics,” IEEE Trans. Magn., vol. 37,

no. 5, pp. 3198-3201, 2001.

L. Xuan, Z. Zeng, B. Shanker, and L. Udpa,

“Meshless Method for Numerical Modeling of

Pulsed Eddy Currents,” IEEE Trans. Magn., vol.

, no. 6, pp. 3457-3462, 2004.

S. L. Ho, S. Shiyou Yang, H. C. Wong, and G. Ni,

“Meshless Collocation Method Based on Radial

Basis Functions and Wavelets,” IEEE Trans.

Magn., vol. 40, no. 2, pp. 1021-1024, 2004.

S. L. Ho, S. Shiyou Yang, G. Ni , H. C. Wong, and

Y. Wang, “Numerical Analysis of Thin Skin

Depths of 3 -D Eddy-Current Problems using a

Combination of Finite Element and Meshless

Methods,” IEEE Trans. Magn., vol. 40, no. 2, pp.

-1357, 2004.

S. L. Ho, S. Shiyou Yang, H. C. Wong, E. W. C.

Lo, and G. Ni, “Refinement Computations of

Electromagnetic Fields using FE and Meshless

Methods,” IEEE Trans. Magn., vol. 41, no. 5, pp.

-1459, 2005.

Y. Zhang, K. R. Shao, D. X. Xie, and J. D. Lavers,

“Meshless Method Based on Orthogonal Basis for

Electromagnetics,” IEEE Trans. Magn., vol. 41,

no. 5, pp. 1432-1435, 2005.

Q. Li and K. Lee, “Adaptive Meshless Method for

Magnetic Field Computation,” IEEE Trans. Magn.,

vol. 42, no. 8, pp. 1996-2003, 2006.

Y. Zhang, K. R. Shao, J. Zhu, D. X. Xie, and J. D.

Lavers, “A Comparison of Point Interpolative

Boundary Meshless Method Based on PBF and

RBF for Transient Eddy-Current Analysis,” IEEE

Trans. Magn., vol. 43, no. 4, pp. 1497-1500, 2007.

F. G. Guimaraes, R. R. Saldanha, R. C. Mesquita,

D. A. Lowther, and J. A. Ramirez, “A Meshless Method for Electromagnetic Field Computation

Based on the Multiquadratic Technique,” IEEE

Trans. Magn., vol. 43, no. 4, pp. 1281-1284, 2007.

S. Ikuno, K. Takakura, and A. Kamitani,

“Influence of Method for Imposing Essential

Boundary Condition on Meshless Galerkin/Petrov-

Galerkin Approaches,” IEEE Trans. Magn., vol.

, no. 4, pp. 1501-1504, 2007.

S. McFee, D. Ma, and M. Golshayan, “A Parallel

Meshless Formulation for h-p Adaptive Finite

Element Analysis,” IEEE Trans. Magn., vol. 44,

no. 6, pp. 786-789, 2008.

Y. Yu and Z. Chen, “Towards the Development of

an Unconditionally Stable Time-Domain Meshless

Method,” IEEE Trans. Microwave Theory Tech.,

vol. 58, no. 3, pp. 578- 586, 2010.

Y. Yu and Z. Chen, “A 3-D Radial Point

Interpolation Method for Meshless Time-Domain

Modeling,” IEEE Trans. Microwave Theory Tech.,

vol. 57, no. 8, pp.2015-202, 2009.

T. Kaufmann, C. Fumeaux, and R. Vahldieck,

“The Meshless Radial Point Interpolation Method

for Time-Domain Electromagnetics,” IEEE MTT-S

Int. Microwave Symp. Dig., Atlanta, pp. 61 - 64,

T. Kaufmann, C. Engströ m, C. Fumeaux, and R.

Vahldieck, “Eigenvalue Analysis and Longtime

Stability of Resonant Structures for the Meshless

Radial Point Interpolation Method in Time

Domain,” IEEE Trans. Microwave Theory Tech,

vol. 58, pp. 3399 - 3408, 2010.

G. R. Liu and Y. T. Gu, An Introduction to

MeshFree Methods and Their Programming.

Springer, 2005.

R. Schaback, “Limit problems for interpolation by

analytic radial base functions,” Comp. Appl. Math.,

vol. 212, no. 2, pp. 127-149, 2008.

D. Shepard, “A Two Dimensional Interpolation

Function for Irregularly Spaced Data,” in Proc.

rd Nat. Conf. ACM, 1968, pp. 517–523.

A. H. Stroud and D. Secrest, Gaussian Quadrature

Formulas, Prentice Hall, N.Y., 1966.

J. C. Rautio, “The Microwava Point of View on

Software Validation,” IEEE Antennas Propagat.

Mag., vol. 38, no. 2, pp. 68-71, 1996

Downloads

Published

2022-05-02

How to Cite

[1]
B. . Honarbakhsh and A. . Tavakoli, “Scattering by a 2D Crack: The Meshfree Collocation Approach”, ACES Journal, vol. 27, no. 3, pp. 278–284, May 2022.

Issue

Section

General Submission