Scan Blindness Elimination Using Composite Defected Ground Structures and Edge-coupled Split Ring Resonators

Authors

  • Ming-Chun Tang The Institute of Applied Physics University of Electronic Science and Technology of China, Chengdu, 610054, China
  • Shaoqiu Xiao The Institute of Applied Physics University of Electronic Science and Technology of China, Chengdu, 610054, China
  • Chaolei Wei The Institute of Applied Physics University of Electronic Science and Technology of China, Chengdu, 610054, China
  • Bingzhong Wang The Institute of Applied Physics University of Electronic Science and Technology of China, Chengdu, 610054, China
  • Chang-Jin Li Engineering and Technology College of Neijiang Normal University Neijiang, 641112, China

Keywords:

Scan Blindness Elimination Using Composite Defected Ground Structures and Edge-coupled Split Ring Resonators

Abstract

A novel compact composite structure, composed of double-U shaped defected ground structure (DGS) and edge-coupled split ring resonator (E-SRR), is presented in this paper. The composite structure is integrated into microstrip array to reduce the interelement mutual coupling, with the aim to eliminate the scan blindness and improve the scanning performance. The three kinds of two-element arrays (without composite structure, with only DGS and with composite structure) are thoroughly simulated, measured, and compared. The results show that, the reduction in mutual coupling of 11 dB between elements in E-plane is obtained with the use of composite structure. It is worth mentioning that, approximately 2dB gain improvement and 2.4dB side lobe suppression are both attained, in comparison with the array with only DGSs. Finally, the scan properties of three kinds of infinite microstrip phased arrays are studied by the waveguide simulator method. The results indicate that the scan blindness in an infinite microstrip phased array can be well eliminated by virtue of the effect of the proposed composite structures, in accordance with results obtained by active patterns of the centre element in 9×5 array.

Downloads

Download data is not yet available.

References

Y. Fu and N. Yuan, “Elimination of Scan

Blindness in Phased Array of Microstrip

Patches using Electromagnetic Bandgap

Materials,” IEEE Antennas and Wireless Propag.

Lett., vol. 3, pp. 63-65, 2004.

L. Zhang, J. A. Castaneda, and N. G.

Alexopoulos, “Scan Blindness Free Phased

Array Design using PBG Materials,” IEEE

Trans. Antennas Propag., vol. 52, pp.

-2007, 2004.

B. Wu, H. Chen, J. A. Kong, and T. M.

Grzegorczyk, “Surface Wave Suppression in

Antenna Systems using Magnetic Metamaterial,”

J. Appl. Phys., vol. 101, pp. 112913 (1-4), 2007.

K. Bull, H. Mosallaei, and K. Sarabandi,

“Metamaterial Insulator Enabled Superdirective

Array,” IEEE Trans. Antennas Propag., vol. 55,

pp. 1047-1085, 2007.

D. -B. Hou, S. Xiao, B. -Z. Wang, L. Jiang, J.

Wang, and W. Hong, “Elimination of Scan

Blindness with Compact Defected Ground

Structures in Microstrip Phased Array,” IET

Microw. Antennas Propag., vol. 3, pp. 269-275,

D. Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian,

and T. Itoh, “A Design of the Low-Pass Filter

using the Novel Microstrip Defected Ground

Structure,” IEEE Trans. Microw. Theory Tech.,

vol. 49, pp. 86-93, 2001.

B. D. Braaten, R. P. Scheeler, M. Reich, R. M.

Nelson, C. Bauer-Reich, J. Glower, and G. J.

Owen, “Compact Metamaterial-Based UHF

RFID Antennas: Deformed Omega and

Split-Ring Resonator Structures,” Applied

Computational Electromagnetic Society (ACES)

Journal, vol. 25, no. 6, pp. 530–542, Jun. 2010.

M. R. I. Faruque, M. T. Islam, and N. Misran,

“Evaluation of EM Absorption in Human Head

with Metamaterial Attachment,” Applied

Computational Electromagnetic Society (ACES)

Journal, vol. 25, no. 12, pp. 1097–1107, Dec.

M.-C. Tang, S. Xiao, T. Deng, Y. Bai, J. Guan,

and B.-Z. Wang, “Study of Miniaturized

Electric Resonance Metamaterial,” Acta

Physica Sinica, vol. 59, no. 7, pp. 4715-4719,

Jul. 2010.

M.-C. Tang, S. Xiao, J. Guan, Y. Bai, S. Gao,

and B. –Z. Wang, “Composite Metamaterial

Enabled Excellent Performance of Microstrip

Antenna Array,” Chinese Physics B, vol. 19, pp.

(1-5), Jul. 2010.

M.-C. Tang, S. Xiao, T. Deng, D. Wang, J. Guan,

B. -Z. Wang, and G. Ge “Compact UWB

Antenna with Multiple Band-Notches for

WiMAX and WLAN,” IEEE Trans. Antennas

Propag., vol. 59, no. 4, pp. 1372-1376, Apr.

N. Katsarakis, T. Koschny, and M. Kafesaki,

“Electric Coupling to the Magnetic Resonance

of Split Ring Resonators,” Appl. Phys. Lett., vol.

, pp. 2943-2945, 2004.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C.

Nemat-Nasser, and S. Schultz, “Composite

Medium with Simultaneously Negative

Permeability and Permittivity,” Phys. Rev. Lett.,

vol. 84, pp. 4184-4187, 2000.

J. D. Baena, J. Bonache, F. Martín, R. M.

Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso,

J. García-García, I. Gil, M. F. Portillo, and M.

Sorolla, “Equivalent-Circuit Models for

Split-Ring Resonators and Complementary

Split-Ring Resonators Coupled to Planar

Transmission Lines,” IEEE Trans. Microwave

Theory Tech., vol. 53, pp. 1451-1461, 2005.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla,

and D. Schurig, “Calculation and Measurement

of Bianisotropy in a Split Ring Resonator

TANG, XIAO, LI, WEI, WANG: SCAN BLINDNESS ELIMINATION USING COMPOSITE DEFECTED GROUND STRUCTURES 581

Metamaterial,” J. Appl. Phys., vol. 100, pp.

(1-9), 2006.

P. Gay-Balmaz and O. J. F. Martina,

“Electromagnetic Resonances in Individual and

Coupled Split-Ring Resonators,” J. Appl. Phys.,

vol. 92, pp. 2929-2936, 2002.

T. Koschny, M. Kafesaki, E. N. Economou, and

C. M. Soukoulis, “Effective Medium Theory of

Left-Handed Materials,” Phys. Rev. Lett., vol.

, pp. 107402(1-4), 2004.

R. W. Ziolkowski, “Design, Fabrication, and

Testing of Double Negative Metamaterials,”

IEEE Trans. Antennas Propag., vol. 51,

pp.1516-1528, 2003

Y. X. Guo, K. M. Luk, and K. W. Leung,

“Mutual Coupling Between Millimeter Wave

Dielectric Resonator Antennas,” IEEE Trans.

Microw. Theory Tech., vol. 47, pp. 2164-2166,

F. Yang and Y. Rahmat-Samii, “Microstrip

Antennas Integrated with Electromagnetic

Band-Gap (EBG) Structures: A Low Mutual

Coupling Design for Array Applications,” IEEE

Trans. Antennas Propag., vol. 51, no. 10, pp.

-2945, 2003.

A. H. Mohammadian, N. M. Martin, and D. W.

Griffin, “A Theoretical and Experimenttal Study

of Mutual Coupling in Microstrip Antenna

Arrays,” IEEE Trans. Antennas Propag., vol. 37,

pp.1217-1223, 1989.

R. P. Jedlicka, M. T. Poe, and K. R. Carver,

“Measured Mutual Coupling Between

Microstrip Antennas,” IEEE Trans. Antennas

Propag., vol. 29, pp. 147-149, 1981.

K. Buell, H. Mosallaei, and K. Sarabandi, “A

Substrate for Small Patch Antennas Providing

Tunable Miniaturization Factors,” IEEE Trans.

Microw. Theory Tech., vol. 54, pp. 135–146,

D. M. Pozar “Analysis of an Infinite Phased

Array of Aperture Coupled Microstrip Patches,”

IEEE Trans. Antennas Propag., vol. 37, pp.

–425, 1989.

Downloads

Published

2022-05-02

How to Cite

[1]
M.-C. . Tang, S. . Xiao, C. . Wei, B. . Wang, and C.-J. . Li, “Scan Blindness Elimination Using Composite Defected Ground Structures and Edge-coupled Split Ring Resonators”, ACES Journal, vol. 26, no. 7, pp. 572–583, May 2022.

Issue

Section

Articles