A Broadband Reflectarray Antenna using the Triangular Array Configuration

Authors

  • M. Mohammadirad Mohammadirad Department of Electrical Engineering Iran University of Science and Technology, Tehran, Iran
  • N. Komjani Department of Electrical Engineering Iran University of Science and Technology, Tehran, Iran mohamadirad@ee.iust.ac.ir, n_komjani@iust.ac.ir
  • Abdel R. Sebak Electrical and Computer Engineering Concordia University, Montreal, Quebec, H3G 1M8, Canada
  • Mohammad R. Chaharmir Research Advanced Antenna Technology Communications Research Centre Canada, Ottawa, Ontario, K2H 8S2, Canada

Keywords:

A Broadband Reflectarray Antenna using the Triangular Array Configuration

Abstract

A novel broadband reflectarray cell element is designed for use in several offset-fed reflectarray antennas based on square and triangular lattice. The proposed double-layer element consists of two stacked rectangular patches having two slots in non-radiating edges. Reflection phase curves are obtained by changing simultaneously the slot’s length of top and bottom patch. The designed element exhibits a large phase-shift range in excess of 360o.This wideband cell element is designed to be used in a triangular lattice that eliminates the grating lobes for wideband reflectarrays composed of unit-cell larger than half-wavelength. Two 529-element square reflectarrays and two 518-element triangular reflectarray antennas were designed and simulated using CST and HFSS, for producing 20o and 35o off-broadside E-plane beams using a 20o offset feed. The 1-dB gain-bandwidth is about 30% at the center frequency of 14 GHz, and the maximum simulated gain is about 31 dBi which is equivalent to 51.5% aperture efficiency for a 20o off-broadside reflectarray based on triangular lattice configurations.

Downloads

Download data is not yet available.

References

D. M. Pozar, S. D. Targonski, and H. D.

Syrigos, “Design of Millimeter-Wave

Microstrip Reflectarray,” IEEE Transactions

on Antennas and Propagation, vol. 45, no.

, pp. 286–295, Feb. 1997.

J. Huang and J. A. Encinar, Reflectarray

Antennas, New York: IEEE Press, 2008.

M. Riel and J.-Jacques Laurin, “Design of

an Electronically Beam Scanning

Reflectarray Using Aperture-Coupled

Elements,” IEEE Transactions on Antennas

and Propagation, vol. 55, no. 5, pp. 1260-

, May 2007.

B. Devireddy, A. Yu, F. Yang, and A. Z.

Elsherbeni, “Gain and Bandwidth

Limitations

of Reflectarrays,” Applied Computational

Electromagnetic Society (ACES) Journal,

vol. 26, no. 2, pp. 170–178, Feb. 2011.

D. M. Pozar, “Bandwidth of Reflectarray,”

Electron. Lett., vol. 39, no. 21, pp. 1490–

, Oct. 2003.

J. A. Encinar, “Design of Two-Layer Printed

Reflectarrays using Patches of Variable

Size,” IEEE Transactions on Antennas and

Propagation, vol. 49, no. 10, pp.1403–1410,

Oct. 2001.

D. Cadoret, A. Laisne, R. Gillard, and H.

Legay, “A New Reflectarray Cell Using

Microstrip Patches Loaded with Slots,”

Microwave and Optical Technology Letters,

vol. 44, no. 3, pp. 270–272, Feb. 2005.

M. Bozzi, S. Germani, and L. Perregrini, ”A

Figure of Merit for Losses in Printed

Reflectarray Elements,” IEEE Antennas and

Wireless Propagation Letters, vol. 3, pp.

-260, 2004.

E. Carrasco, M. Arrebola, J. A. Encinar, and

M. Barba, ” Demonstration of a Shaped

Beam Reflectarray Using Aperture-Coupled

Delay Lines for LMDS Central Station

Antenna,” IEEE Transactions on Antennas

and Propagation, vol. 56, no. 10, pp. 3103-

, Oct. 2008.

J. Encinar and J. A. Zornoza, “Broadband

Design of a Three-Layer Printed

Reflectarray,” IEEE Transactions on

Antennas and Propagation, vol. 51, no. 7,

pp. 1662–1664, Jul. 2003.

J. Huang, and R. J. Pogorzelski, “A Ka-band

Microstrip Reflectarray with Elements

Having Variable Rotation Angles,” IEEE

Transactions on Antennas and Propagation,

vol. 46, no. 5, pp. 650–656, May 1998.

M. Ab-Elhady, S. H. Zainud-Deen, A. A.

Mitkees, and A. A. Kishk, “X-Band Linear

Polarized Aperture-Coupled DRA

Reflectarray,” Microwave and Millimeter

Wave Technology (ICMMT), 2010

International Conference, pp. 1042 – 1044,

May 2010.

P. Nayeri, F. Yang, and A. Z. Elsherbeni, “A

Broadband Microstrip Reflectarray using

Sub-Wavelength Patch Elements,” IEEE

APS/URSI, pp. 1-4, 2009.

P. Nayeri, F. Yang, and A. Z. Elsherbeni,

“Broadband Reflectarray Antennas using

Double-Layer Subwavelength Patch

Elements,” IEEE Antennas and Wireless

Propagation Letters, vol. 9, pp. 1139-1142,

M. R. Chaharmir, J. Shaker, N. Gagnon, and

D. Lee, “Design of Broadband, Single Layer

Dual-Band Large Reflectarray Using Multi

Open Loop Elements,” IEEE Transactions

on Antennas and Propagation, vol. 58, no. 9,

Sept. 2010.

M. R. Chaharmir, J. Shaker, and H. Legay,

“Broadband Design of a Single Layer Large

Reflectarray Using Multi Cross Loop

Elements,” IEEE Transactions on Antennas

and Propagation, vol. 57, no. 10, pp. 3363–

, Oct. 2009.

H. Rajagopalan, Y. Rahmat-Samii, and W.

A. Imbriale, “RF MEMS Actuated

Reconfigurable Reflectarray Patch-Slot

Element,” IEEE Transactions on Antennas

and Propagation, vol. 56, no. 12, pp. 3689–

, Dec. 2008.

CST Computer Simulation Technology, “3D

EM Simulation Software,” Online:

http://www.cst.com

Ansoft HFSS, “The 3D, electromagnetic,

finite-element simulation tools for highfrequency design,” [Online]. Available:

http://www.ansoft.com

M. I. Skolnik, Radar Handbook. McGraw

Hill, 2nd Ed., 1990.

Downloads

Published

2022-05-02

How to Cite

[1]
M. M. Mohammadirad, N. . Komjani, A. R. . Sebak, and M. R. . Chaharmir, “A Broadband Reflectarray Antenna using the Triangular Array Configuration”, ACES Journal, vol. 26, no. 8, pp. 640–650, May 2022.

Issue

Section

General Submission