Combined Bowtie–Peano Antennas for Wideband Performance
Keywords:
Combined Bowtie–Peano Antennas for Wideband PerformanceAbstract
The concept of the folded bowtie wideband antennas is introduced in this paper. To this aim, the design procedure employs a Peano space-filling curve approach which leads to an entire family of combined bowtie-Peano antennas (BPA). The new structures efficiently blend the broadband performance of bowtie antennas with the compactness of Peano forms. In this context, two alternative devices are proposed and thoroughly investigated. Numerical results derived by means of a finite-difference time-domain (FDTD) technique clearly reveal the behavior and the merits of the novel radiators, signifying, also, the feasibility of bandwidth enhancement at specific resonances.
Downloads
References
H. Sagan, Space-Filling Curves, Springer-Verlag,
J. Gonzalez-Arbesu, S. Blanch, and J. Romeu,
“Are Space-Filling Curves Efficient Small Antennas?,” IEEE Antennas Wireless Propag. Lett., vol.
, pp. 147-150, 2003.
R. Hasse, V. Demir, W. Hunsicker, D. Kajfez, and
A. Elsherbeni, “Design and Analysis of Partitioned Square Loop Antennas,” Applied Computational Electromagnetic Society (ACES) Journal,
vol. 23, no. 1, pp. 53-61, 2008.
C. de J. van Coevorden, A. Bretones, M. Pantoja,
S. Garcıa, and A. Monorchio, “A New Implementation of the Hybrid Taguchi GA: Application to
the Design of a Miniaturized Log-Periodic ThinWire Antenna,” Applied Computational Electromagnetic Society (ACES) Journal, vol. 24, no. 1,
pp. 21-31, 2009.
T. Spence, D. Werner, and J. Carvajal, “Modular
Broadband Phased-Arrays Based on a Nonuniform
Distribution of Elements Along the Peano-Gosper
Space-Filling Curve,” IEEE Trans. Antennas
Propag., vol. 58, no. 2, pp. 600-604, 2010.
S. Best, “A Comparison of the Resonant Properties of Small Space-Filling Fractal Antennas,”
IEEE Antennas Wireless Propag. Lett., vol. 2, pp.
-200, 2003.
J. McVay, A. Hoorfar, and N. Engheta, “Peano
High Impedance Surfaces,” Radio Sci., vol. 40,
pp. 1-9, 2005.
H. Oraizi and S. Hedayati, “Miniaturized UWB
Monopole Microstrip Antenna Design by the
-30
-25
-20
-15
-10
-5
PAPADOPOULOS-KELIDIS, LALAS, KANTARTZIS, TSIBOUKIS: COMBINED BOWTIE–PEANO ANTENNAS FOR WIDEBAND PERFORMANCE 766
Combination of Giusepe Peano and Sierpinski
Carpet Fractals,” IEEE Antennas Wireless Propag.
Lett., vol. 10, pp. 67-70, 2011.
S.-H. Wi, J.-M. Kim, and J.-G. Yook, “MicrostripFed Bowtie-Shaped Meander Slot Antenna with
Compact and Broadband Characteristics,” Microw. Opt. Technol. Lett., vol. 45, no. 1, pp. 88-
, 2005.
J.-F. Li, B.-H. Sun, H.-J. Zhou, and Q.-Z. Liu,
“Miniaturized Circularly-Polarized Antenna using
Tapered Meander-Line Structure,” PIERS, vol. 78,
pp. 321-388, 2008.
J. William and R. Nakkeeran, “A New UWB Slot
Antenna with Rejection of WiMax and WLAN
Bands,” Applied Computational Electromagnetic
Society (ACES) Journal, vol. 25, no. 9, pp. 787-
, 2010.
E. El-Khouly, H. Ghali, and S. Khamis, “High Directivity Antenna using a Modified Peano SpaceFilling Curve,” IEEE Antennas Wireless Propag.
Lett., vol. 6, pp. 405-407, 2007.
J. McVay, A. Hoorfar, and N. Engheta, “SpaceFilling Curve Radio Frequency Identification
Tags,” Applied Computational Electromagnetic
Society (ACES) Journal, vol. 25, no. 6, pp. 517-
, 2010.
T. Terada, K. Ide, K. Iwata, and T. Fukusako,
“Design of a Small, Low-Profile Print Antenna using a Peano Line,” Microw. Opt. Technol. Lett.,
vol. 51, no. 8, pp. 1833-1838, 2009.
C. A. Balanis, Modern Antenna Handbook, WileyBlackwell, 2008.
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain
Method, Artech House, 2005.