FEKO/NEC2 Simulation of Candidate Antennas for the Long Wavelength Array (LWA)

Authors

  • Nassissie Fekadu Virginia Polytechnic Institute and State University Blacksburg, VA 24061-2000, USA
  • Amir I. Zaghloul Virginia Polytechnic Institute and State University Blacksburg, VA 24061-2000, USA

Keywords:

FEKO/NEC2 Simulation of Candidate Antennas for the Long Wavelength Array (LWA)

Abstract

This paper presents FEKO and NEC-2 simulations done on three dipole-like structures; the big blade, the tied-fork and the fork antenna. These antenna elements are considered for the design of the long wavelength array (LWA). The LWA is an interferometer under construction in New Mexico, USA for astronomical observations in the 20 - 80 MHz spectrum. This paper presents the simulation results of a co-polarized antenna gain patterns, impedance values, and mutual couplings for each candidate elements. Coupling results from FEKO and NEC-2 simulations are compared with measurement result of the big blade antenna. The paper also presents Sparameters for 25 elements of the tied-fork antennas.

Downloads

Download data is not yet available.

References

N. Paravastu, B. Hicks, P. Ray, and W. Erickson,

“A New Candidate Active Antenna Design for the

Long Wavelength Array”,Long Wavelength

Array Memo, no. 88, May 2007.

W. C. Erickson, “Tests on Large Blade Dipoles,”

Long Wavelength Array Memo, no. 36, May 2006.

Retrieved May 31, 2010, fro

http://lwa.nrl.navy.mil/.

A. Kerkhoff, “The Calculation of Mutual

Coupling between Two Antennas and its

Application to the Reduction of Mutual Coupling

Effects in a Pseudo-Random Phased Array,” Long

Wavelength Array Memo, no. 103, August 2007.

S. W. Ellingson, T. E. Clarke, A. Cohem, N.E.

Kassim, Y. Pihlstrom, L. J Rickard, andG.B.

Taylor, “The Long Wavelength Array (invited

paper),” Proc. IEEE, vol. 97, no. 8, pp. 1421-

, August 2009.

C. Janes, J. Craig, and L. Rickard, “The Long

Wavelength Array System Technical

Requirements, Version: Draft #10,”Long

Wavelength Array Memo, no. 160, Feb. 2009.

B. Hicks et al., “Specmaster: A Simple Spectrum

Monitoring Tool,” Long Wavelength Array Memo,

no. 74, Jan 2007.

T. E. Clarke, “Scientific Requirements for the Long Wavelength Array,” Long Wavelength

Array Memo, no. 117, Nov. 19, 2007.

W. N. Christiansen and J. A. Högbom,

Radiotelescopes, Cambridge University Press,

New York, 1969.

L. Kogan and A. Cohen, “A 110 m x 100 m

Elliptical Station Design Optimized to Minimize

Sidelobes,” Long Wavelength Array Memo, no.

, Jan 8, 2009.

P. Henning et.al, “The First Station of the Long

Wavelength Array,” Long Wavelength Array

Memo, no. 171, August, 2010.

A. Kerkhof and S. Ellingson, “A Wideband Planar

Dipole Antenna for Use in the Long Wavelength

Demonstrator Array (LWDA),” Long Wavelength

Array Memo, no. 18, July 2005.

B. Erickson, H. Schmitt,and E. Polisensky,

“Report on Mutual Coupling and Impedance

Measurements on Large Blade Dipoles,” Long

Wavelength Array Memo, no. 53, Aug. 2006.

A. Kerkhoff, “Comparison of Dipole Antenna

Designs for the LWA,” Long Wavelength Array

Memo, no. 102, Aug 2007.

D. B. Davidson, Computational Electromagnetics

for RF and Microwave Engineering, Cambridge

University Press, New York, 2005.

S. Ellingson, “A Design Study Comparing LWA

Station Arrays Consisting ofThin Inverted-V

Dipoles,” Long Wavelength Array Memo, no. 75,

January 2008.

Downloads

Published

2022-05-02

How to Cite

[1]
N. . Fekadu and A. I. . Zaghloul, “FEKO/NEC2 Simulation of Candidate Antennas for the Long Wavelength Array (LWA)”, ACES Journal, vol. 26, no. 12, pp. 963–972, May 2022.

Issue

Section

General Submission