A Novel Wideband and Multi-band Implantable Antenna Design for Biomedical Telemetry
DOI:
https://doi.org/10.13052/2022.ACES.J.370410Keywords:
Biomedical telemetry, implanted antenna, ISM, MedRadio, multiband, multi-tracks, wideband, WIMD, WMTSAbstract
In this work, a novel multi-tracks wideband and multi-band miniaturized antenna design for implanted medical devices biomedical telemetry is proposed. This antenna entirely covers seven frequency bands which are the bands (401−406) MHz of the Medical Device Radiocommunications Service (MedRadio), the three bands (433.1−434.8), (868.0−868.6), and (902.8−928.0) MHz of the Industrial, Scientific, and Medical (ISM), and the three bands (608−614) MHz, and (1.395−1.400) and (1.427−1.432) GHz of the Wireless Medical Telemetry Service (WMTS). The antenna possesses a compact full size of (19.5 × 12.9 × 0.456) mm3. The antenna miniaturization and impedance bandwidth enhancement are achieved using two techniques: the patch slotting and insertion of open-end slots in the ground plane, respectively. Prototype of proposed antenna with multi-tracks has been fabricated and tested in free space. The comparison between the simulated and measured reflection coefficient has been done and found in good agreement with each other. Furthermore, simulations of the proposed antenna implanted in the underneath the scalp in a realistic human model shows a wideband operation from 0.19 to 0.94 GHz, and from 1.38 to 1.54 GHz corresponding to return loss (S11 ≤ −10 dB). Link budget calculation is performed to specify the range of telemetry considering both Specific Absorption Rate (SAR) restrictions and effective isotropic radiated power (EIRP) limitations. The designed implantable antenna with full ground plane presents an appropriate reflection coefficient for muscle implantation. Furthermore, the designed implanted muscle antenna may be also suitable for skin implantation.
Downloads
References
P. S. Hall and Y. Hao, Antennas and Propagation for Body Centric Wireless Communications, Artech House, Norwood, 2012.
K. S. Nikita, Handbook of Biomedical Telemetry, Wiley-IEEE, 2014.
A. Kiourti and K. S. Nikita, “A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 7, pp. 1422-1430, Jul. 2017. doi: 10.1109/TBME.2017.2668612.
A. K. Teshome, B. Kibret, and D. T. H. Lai, “A review of implant communication technology in WBAN: Progress and challenges,” IEEE Reviews in Biomedical Engineering, vol. 12, pp. 88-99, Feb. 2019. doi: 10.1109/RBME.2018.2848228.
K. Fujimoto and K. Ito, Antennas for Small Mobile Terminals, Artech House, Norwood, 2018.
Z. N. Chen, D. Liu, H. Nakano, X. Qing, and Th. Zwick, Handbook of Antenna Technologies, Springer. Singapore, 2016.
S. Bakogianni and S. Koulouridis, “An implantable planar dipole antenna for wireless MedRadio-Band biotelemetry devices,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 234-237, Feb. 2016. doi: 10.1109/LAWP.2015.2439039.
S. M. Huang, M. R. Tofighi, and A. Rosen, “Consideration for the design and placement of implantable annular slot antenna for intracranial pressure monitoring devices,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1514-1517, Jul. 2015. doi: 10.1109/LAWP.2014.2370940.
C. Wang, L. Zhang, S. Wu, S. Huang, C. Liu, and X. Wu, “A dual-band monopole antenna with EBG for wearable wireless body area networks,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 1, pp. 48-54, Jan. 2021. https://doi.org/10.47037/2020.ACES.J.360107.
D. Nikolayev, M. Zhadobov, and R. Sauleau, “Impact of tissue electromagnetic properties on radiation performance of in-body antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 8, pp. 1440-1444, Aug. 2018. doi: 10.1109/LAWP.2018.2848943.
X. Y. Liu, Z. T. Wu, Y. Fan, and E. M. Tentzeris, “A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 577-580, Mar. 2017. doi: 10.1109/LAWP.2016.2590477.
A. Kiourti, J. R. Costa, C. A. Fernandes, and K. S. Nikita, “A broadband implantable and a dual-band on-body repeater antenna: Design and transmission performance,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 2899-2908, Jun. 2014. doi: 10.1109/TAP.2014.2310749.
C. Tsai, K. Chen, and C. Yang, “Implantable wideband low-SAR antenna with c-shaped coupled ground,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1594-1597, Aug. 2015. doi: 10.1109/LAWP.2015.2413839.
H. Li, Y. Guo, and S. Xiao, “Broadband circularly polarised implantable antenna For biomedical applications,” Electronics Letters, vol. 52, no. 7, pp. 504-506, Apr. 2016. doi: 10.1049/el.2015.4445.
A. G. Miquel, S. Curto, N. Vidal, J. M. Lopez-Villegas, F. M. Ramos, and P. Prakash, “Multilayered broadband antenna for compact embedded implantable medical devices: Design and characterization,” Progress In Electromagnetics Research, vol. 159, pp. 1-13, Apr. 2017. doi:10.2528/PIER16121507
Y. Zhang, C. Liu, X. Liu, K. Zhang, and X. Yang, “A wideband circularly polarized implantable antenna for 915 MHz ISM-Band biotelemetry devices,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 8, pp. 1473-1477, Aug. 2018. doi: 10.1109/LAWP.2018.2849847.
S. Das and D. Mitra, “A compact wideband flexible implantable slot antenna design with enhanced gain,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 8, pp. 4309-4314, Aug. 2018. doi: 10.1109/TAP.2018.2836463.
R. Lesnik, N. Verhovski, I. Mizrachi, B. Milgrom, and M. Haridim, “Gain enhancement of a compact implantable dipole for biomedical applications,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 10, pp. 1778-1782, Oct. 2018. doi: 10.1109/LAWP.2018.2866233.
G. Samanta and D. Mitra, “Miniaturised and radiation efficient implantable antenna using reactive impedance surface for biotelemetry,” IET Microwaves, Antennas & Propagation, vol. 14, no. 2, pp. 177-184, Feb. 2020. doi: 10.1049/iet-map.2019.0132.
X. Yang, H. Wong, and J. Xiang, “Polarization reconfigurable planar inverted-F antenna for implantable telemetry applications,” IEEE Access, vol. 7, pp. 141900-141909, Oct. 2019. doi: 10.1109/ACCESS.2019.2941388.
Z. Xia, H. Li, Z. Lee, S. Xiao, W. Shao, X. Ding, and X. Yang, “A wideband circularly polarized implantable patch antenna for ISM band biomedical applications,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2399-2404, Mar. 2020. doi: 10.1109/TAP.2019.2944538.
A. Kiourti and K. S. Nikita, “Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 8, pp. 3568-3575, Aug. 2012. doi: 10.1109/TAP.2012.2201078.
J. Ung and T. Karacolak, “A dual-band meandered Dipole antenna for medical telemetry applications,” Progress In Electromagnetics Research C, vol. 63, pp. 85-94, Apr. 2016. doi:10.2528/PIERC16012603
S. A. A. Shah and H. Yoo, “Scalp-implantable antenna systems for intracranial pressure monitoring,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 4, pp. 2170-2173, Apr. 2018. doi: 10.1109/TAP.2018.2801346.
A. O. Kaka, M. Toycan, S. D. Walker, and D. Kavaz, “Dual band, miniaturized, implantable antenna design with on-body antennas for wireless health monitoring,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 35, no. 4, pp. 443-452, Apr. 2020.
L. Xu, Y. Guo, and W. Wu, “Dual-band implantable antenna with open-end slots on ground,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1564-1567, 2012. doi: 10.1109/LAWP.2012.2237010.
M. Usluer, B. Cetindere, and S C. Basaran, “Compact implantable antenna design for MICS and ISM band biotelemetry applications,” Microwave and Optical Technology Letters, vol. 62, no. 4, pp. 1581-1587, Apr. 2020. https://doi.org/10.1002/mop.32185.
Y. Fan, H. Liu, X. Liu, Y. Cao, Z. Li, and M. M. Tentzeris, “Novel coated differentially fed dual-band fractal antenna for implantable medical devices,” IET Microwaves, Antennas & Propagation, vol. 14, no. 2, pp. 199-208, Feb. 2020. doi: 10.1049/iet-map.2018.6171.
F. Faisal and H. Yoo, “A miniaturized novel-shape dual-band antenna for implantable applications,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 774-783, Feb. 2019. doi: 10.1109/TAP.2018.2880046.
H. Zhang, L. Li, C. Liu, Y.-X. Guo, and S. Wu, “Miniaturized implantable antenna integrated with split ring resonate rings for wireless power transfer and data telemetry,” Microwave and Optical Technology Letters, vol. 59, no. 3, pp. 710-714, Mar. 2017. https://doi.org/10.1002/mop.30381
L. Luo, B. Hu, J. Wu, T. Yan, and L-J. Xu, “Compact dual-band antenna with slotted ground for implantable applications,” Microwave and Optical Technology Letters, vol. 61, no. 5, pp. 1314-1319, May 2019. https://doi.org/10.1002/mop. 31718.
I. Gani and H. Yoo, “Multi-band antenna system for skin implant,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 4, pp. 294-296, Apr. 2016. doi: 10.1109/LMWC.2016.2538470.
R. Das, Y. Cho, and H. Yoo, “High efficiency unidirectional wireless power transfer by a triple band deep-tissue implantable antenna,” 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, pp. 1-4, 2016. doi: 10.1109/MWSYM.2016.7540252.
M. Zada and H. Yoo, “A miniaturized triple-band implantable antenna system for bio-telemetry applications,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7378-7382, Dec. 2018. doi: 10.1109/TAP.2018.2874681.
F. Huang, C. Lee, C. Chang, L. Chen, T. Yo, and C. Luo, “Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2646-2653, Jul. 2011. doi: 10.1109/TAP.2011.2152317.
C. K. Wu, T. F. Chien, C. L. Yang, and C. H. Luo, “Design of novel s-shaped quad-band antenna for MedRadio/WMTS/ISM implantable biotelemetry applications,” Int. J. Antennas Propag., vol. 2012, Article ID 564092, 2012. doi:10.1155/2012/564092.
I. A. Shah, M. Zada, and H. Yoo, “Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 4230-4234, Jun. 2019. doi: 10.1109/TAP.2019.2908252.
A. Basir and H. Yoo, “Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1943-1953, May 2020. doi: 10.1109/TMTT.2020.2965938.
A. Kiourti and K. S. Nikita, “A review of implantable patch antennas for biomedical telemetry: challenges and solutions [wireless corner],” IEEE Antennas and Propagation Magazine, vol. 54, no. 3, pp. 210-228, Jun. 2012. doi: 10.1109/MAP.2012.6293992.
Z. Jiang, Z. Wang, M. Leach, E. G. Lim, J. Wang, R. Pei, and Y. Huang, “Wideband loop antenna with split-ring resonators for wireless medical telemetry,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 7, pp. 1415-1419, Jul. 2019. doi: 10.1109/LAWP.2019.2918501.
Available on 08.04.2021. https://www.craneae.com/microwave-solutions-substrates
S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues,” Phys. Med. Biol., vol. 41, pp. 2231-2293, 1996. Available at: http://niremf.ifac.cnr.it/tissprop/
C. M. Lee, T. C. Yo, F. J. Huang, and C. H. Luo, “Bandwidth enhancement of planar inverted-f antenna for implantable biotelemetry,” Microwave and Optical Technology Letters, vol. 51, no. 3, pp. 749-752, Mar. 2009. https://doi.org/10.1002/mop.2418
S. N. Makarov, G. M. Noetscher, J. Yanamadala, M. W. Piazza, S. Louie, A. Proko, A. Nazarian, and A. Nummenmaa, “Virtual human models for electromagnetic studies and their applications,” IEEE Reviews in Biomedical Engineering, vol. 10, pp. 95-121, Dec. 2017. doi: 10.1109/RBME.2017.2722420.
IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 1999.
IEEE Standard for Safety Levels with Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1, 2005.
International Telecommunications Union-Radiocommunications (ITU-R), Radio Regulations, document SA 1346, ITU, Geneva, Switzerland. Available at: http://itu.int/home