A New Implementation of the Hybrid Taguchi GA: Application to the design of a Miniaturized Log-Periodic Thin-Wire Antenna

Authors

  • C. M. de J. van Coevorden Facultad de Ciencias, Departamento de Electromagnetismo, University of Granada, 18071 Granada, Spain
  • A. R. Bretones Facultad de Ciencias, Departamento de Electromagnetismo, University of Granada, 18071 Granada, Spain
  • M. F. Pantoja Facultad de Ciencias, Departamento de Electromagnetismo, University of Granada, 18071 Granada, Spain
  • S. G. Garc ́ıa Facultad de Ciencias, Departamento de Electromagnetismo, University of Granada, 18071 Granada, Spain
  • R. G. Mart ́ın Mart ́ın Facultad de Ciencias, Departamento de Electromagnetismo, University of Granada, 18071 Granada, Spain

Keywords:

A New Implementation of the Hybrid Taguchi GA: Application to the design of a Miniaturized Log-Periodic Thin-Wire Antenna

Abstract

This paper proposes a modification of the hybrid Taguchi-genetic algorithm (HTGA) for solving global numerical optimization problems with continuous variables. The HTGA is a method that combines a conventional genetic algorithm (CGA), which has a powerful global exploration capability, with the Taguchi method, which can exploit the optimum offspring. The Taguchi method is utilized in the HTGA to help in selecting the best genes in the crossover operations. The new implementation proposed in this paper (nHTGA) involves producing, at each generation, a single offspring by Taguchi method, one of its parents being the best individual found so far, instead of repeatedly applying Taguchi to generate several individuals with both parents selected at random as HTGA does. Moreover, the efficiency of the algorithm is enhanced by only crossing via Taguchi individuals with a high enough number of different genes. The performance of the proposed HTGA is assessed by solving several benchmark problems of global optimization with large number of dimensions and very large numbers of local minima. The computational experiments show that the new algorithm causes a reduction, sometimes drastic, in the number of function calls, i.e. in computational time, for all the benchmark problems proposed. As an example of application of this novel algorithm to a real-world problem, the optimization of an ultra-broadband zigzag log-periodic antenna is carried out and discussed.

Downloads

Download data is not yet available.

References

K. de Jong, “Analysis of the behavior a class of ge-

netic adaptative systems,” Ph.D. dissertation, Dept.

Comput. Commun. Sci., Univ. Michigan, Ann Arbor,

D. Goldberg, Genetic Algorithms in Search, Opti-

mization, and Machine Learning. Reading, MA:

Addison-Wesley, 1989.

K. Kristinnson and G. Dumont, “System identifi-

cation and control using genetic algorithms,” IEEE

Trans. Syst., Man, Cybern., vol. 22, no. 5, pp. 1033–

, 1992.

M. F. Pantoja, A. Monorchio, A. R. Bretones, and

R. G. Mart ́ın, “Direct GA-based optimization of

resistively loaded wire antennas in the time domain,”

Electronic Letters, vol. 36, no. 24, pp. 1988–1990,

Nov. 2000.

G. Manara, A. Monorchio, and R. Mittra, “Fre-

quency selective surface design based on genetic

algorithm,” Electronic Letters, vol. 35, no. 17, pp.

–1401, Aug. 1999.

C. M. de J. van Coevorden, S. G. Garc ́ıa, M. F. Pan-

toja, A. R. Bretones, and R. G. Mart ́ın, “Microstrip-

patch array design using a multiobjective GA,” IEEE

Antenna Wireless and Propagation Letters, vol. 4,

pp. 100–103, Nov. 2005.

C. M. de J. van Coevorden, A. R. Bretones,

M. F. Pantoja, F. Ruiz, S. G. Garc ́ıa, and

R. G. Mart ́ın, “Ga design of a thin-wire bow-tie

antenna for gpr applications,” IEEE Trans. Geosci.

Remote Sens., vol. 44, no. 4, pp. 1004–1010, Apr.

S. Uckun, S. Bagchi, and K. Kawamura, “Managing

genetic search in job shop scheduling,” IEEE Expert,

vol. 8, no. 5, pp. 15–24, 1993.

J. Lienig, “A parallel genetic algorithm for

performance-driven VLSI routing,” IEEE Trans.

Evol. Comput., vol. 1, no. 1, pp. 29–39, Apr. 1997.

B. Dike and R. Smith, “Application of genetic algo-

rithms to air combat maneuvering,” pp. 84–94, 1993.

M. Ito, F. Zhang, and N. Yoshida, “Collision avoid-

ance control of ship with genetic algorithm,” pp.

–1796, 1999.

L. Jin, C. Yao, and X. Huang, “An improved method

on meteorological prediction modeling using genetic

algorithm and artificial neural network,” The Sixth

World Congress on Intelligent Control and Automa-

tion, pp. 31–35, 2006.

T. Back, D. Fogel, and Z. Michalewicz, Eds., Hand-

book on evolutionary computation. IOP Publishing

Ltd and Oxford University Press, 1997.

J. Renders and H. Bersini, “Hybridizing genetic

algorithms with hill-climbing methods for global

optimization: two possible ways,” Proceedings of the

First IEEE Conference on Evolutionary Computa-

tion, pp. 312–317, 1994.

J. Yen, J. Liao, B. Lee, and D. Randolph, “A hybrid

approach to modeling metabolic systems using a

genetic algorithm and simplex method,” IEEE Trans.

Syst., Man, Cybern. B, vol. 28, no. 2, pp. 173–191,

Apr. 1998.

ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009

Y. Leung and Y. Wang, “An orthogonal genetic

algorithm with quantization for global numerical

optimization,” IEEE Trans. Evol. Comput., vol. 5,

no. 1, pp. 41–53, Feb. 2001.

J. Tsai, T. Liu, and J. Chou, “Hybrid Taguchi-genetic

algorithm for global numerical optimization,” IEEE

Trans. Evol. Comput., vol. 8, no. 4, pp. 365–377,

Aug. 2004.

G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi’s

Quality Engineering Handbook. John Wiley and

sons, Inc., 2004.

J. Tsai, J. Chou, and T. Liu, “Tuning the structure

and parameters of a neural network by using hy-

brid taguchi-genetic algorithm,” IEEE Trans. Neural

Netw., vol. 17, no. 1, pp. 69–80, Jan. 2006.

J. Tsai, T. Liu, and J. Chou, “Optimal design of

digital iir filters by using hybrid taguchi genetic

algorithm,” IEEE Transactions on Industrial Elec-

tronics, vol. 53, no. 3, pp. 867–879, Jun. 2006.

W.-C. Weng, F. Yang, and A. Elsherbeni, “Linear

antenna array synthesis using taguchi’s method: A

novel optimization technique in electromagnetics,”

Antennas and Propagation, IEEE Transactions on,

vol. 55, no. 3, pp. 723–730, March 2007.

W.-C. Weng, F. Yang, and A. Z. Elsherbeni,

Electromagnetics and Antenna Optimization Using

Taguchi’s Method. Morgan and Claypool, 2007.

R. Johnson and H. Jasik, Antenna engineering hand-

book, 2nd ed. McGray Hill, 1984.

R. DuHamel and D. Isbell, “Broadband logarithmi-

cally periodic antenna structures,” IRE Int. Conv.

Rec., vol. 5, pp. 119–128, Mar. 1957.

R. DuHamel and F. Ore, “Logarithmically periodic

antenna designs,” IRE Int. Conv. Rec., vol. 6, pp.

–151, Mar. 1958.

D. Isbell, “Log periodic dipole arrays,” IEEE Trans.

on Antennas and Propagation, vol. 8, no. 3, pp. 260–

, May 1960.

D. Berry and F. Ore, “Log periodic monopole array,”

IRE Int. Conv. Rec., vol. 9, pp. 76–85, Mar. 1961.

J. Greiser and P. Mayes, “The bent backfire zigzag

- a vertically polarized frequency-independent an-

tenna,” IEEE Trans. Antennas Propag., vol. AP-11,

pp. 281–299, May 1964.

S. Sharma and L. Shafai, “Investigations on minia-

turized endfire vertically polarized quasi-fractal log-

periodic antenna,” IEEE Trans. Antennas Propag.,

vol. 52, pp. 1957–1962, Aug. 2004

Downloads

Published

2022-06-17

How to Cite

[1]
C. M. de J. van . Coevorden, A. R. . Bretones, M. F. . Pantoja, Garc ́ıa S. G. ., and Mart ́ın R. G. M. ́., “A New Implementation of the Hybrid Taguchi GA: Application to the design of a Miniaturized Log-Periodic Thin-Wire Antenna”, ACES Journal, vol. 24, no. 1, pp. 21–31, Jun. 2022.

Issue

Section

General Submission