Functional Imaging of Compressed Breast by Microwave Radiometry

Authors

  • S. Iudicello Dipartimento di Informatica Sistemi e Produzione, Università di Roma Tor Vergata, via del Politecnico 1,Roma, Italy, 00133
  • F. Bardati Dipartimento di Informatica Sistemi e Produzione, Università di Roma Tor Vergata, via del Politecnico 1,Roma, Italy, 00133

Keywords:

Functional Imaging of Compressed Breast by Microwave Radiometry

Abstract

A tumor is visible by a passive microwave radiometer scanning the breast surface if it changes the radiometer output of a healthy breast to an extent that overcomes the radiometric resolution for the given sensing antenna and integration time. In this paper the breast is intentionally squeezed between the radiometric antenna and the chest wall and the temperature is evaluated for the deformed breast together with the generated radiometric signal. To be compared with the radiometric resolution, the difference signal between the outputs in the presence of a lesion and in its absence has to be evaluated. To achieve this, a mechanical, thermal and electromagnetic model of the breast has been developed. A finite-element code has been used to solve for the mechanical and thermal problems, while FDTD has been exploited for electromagnetic computations. We show that compressing the breast improves the radiometric visibility depending on tumor depth and deformation.

Downloads

Download data is not yet available.

References

F. Bardati and D. Solimini, “Radiometric sensing of

biological layered media,” Radio Sci., vol. 18, no. 6, pp.

-1401, 1983.

F. Sterzer, P. Paglione, F. Wozniak, J. Mendecki, E.

Friedenthal, and C. Botstein, “Self-balancing microwave

radiometer for non-invasively measuring the temperature of

subcutaneous tissue during localized hyperthermia

treatments of cancer,” IEEE MTT-S Int Microwave Symp

Digest, vol. 82, no. 1, pp. 438-440, 1982.

M. Chivè, M. Plancot, Y. Leroy, G. Giaux, and B. Prevost,

“Microwave (1 and 2.45 GHz) and radiofrequency (13.56

MHz) hyperthermia monitored by microwave

thermography,” 12th European Microwave Conf, Helsinki

(Finland), Sept. 1982.

S. Jacobsen, P. Stauffer, and D. Neuman, “Dual-mode

antenna design for microwave heating and non-invasive

thermometry of superficial tissue disease,” IEEE Trans

Biomed. Eng., vol. 47, no. 11, pp. 1500-1509, 2000.

C. Gros, M. Gautherie, and P. Bourjat, “Prognosis and post-

therapeutic follow-up of breast cancers by thermography,”

IEEE Trans Biomed Eng, vol. 6, pp.77-90, 1975.

J. Edrich, “A millimeter-wave thermography for human

breast and spine scans,” 6th European Microwave Conf,

Rome, pp. 137-140, Sept. 1976.

A. H. Barret, P. C. Myers, and M. L. Sadowsky, “Detection

of breast cancer by microwave radiometry,” Radio Sci., vol.

, no. 6(S), pp. 167, 1977.

K. L. Carr, A. M. El-Mahdi, and J. Shaffer, “Dual-mode

microwave system to enhance early detection of cancer,”

IEEE Trans Microwave Theory Tech, vol. 29, no.3, pp.

-260, 1981.

J. W. Lee, S. M. Lee, K. S. Kim, W. T. Han, G. Yoon, L. A.

Pasmanik, I. A. Ulyanichev, and A. V. Troitsky,

“Experimental investigation of the mammary gland tumor

phantom for multifrequency microwave radio-

thermometers,” Med Biol Eng Comput, vol. 42, no.5, pp.

-590, 2004.

K. M. Ludeke, J. Kohler, and J. Kanzenbach, “A new

radiation balance microwave thermograph for

simultaneous and indipendent temperature and emissivity

measurements,” J Microwave Power, vol. 14, pp. 117-121,

F. Bardati and S. Iudicello, “Modeling the visibility of

breast malignancy by a microwave radiometer,” to be

published on IEEE Trans. Biomed. Eng.

F. Bardati and S. Iudicello, “Modeling functional imaging of

breast by microwave radiometry,” ACES Conference,

Verona, Italy, pp. 871-875, 19-23 Mar. 2007.

“The European Protocol for the Quality Control of the

Physical and Thecnical Aspects of Mammography

Screening.” CEC Report EUR 14821, 3rd edn 1999.

http://ikrweb.uni-uenster.de/aqs/Richtlinien

/qualitaet_mammo/qualitaet_mammo.html

G . M. J. Van Leeuwen, J. W. Hand, J. B. Van de Kamer,

and S. Mizushina, “Temperature retrieval algorithm fro

brain temperature monitoring using microwave brightness

temperatures,” Electronics Letters, vol. 37, no. 6, pp. 341-2,

COMSOL, www.comsol.com , Version 3.3a.

A. Samani, J. Bishop, M. J. Yaffe, and B. Plewes,

“Biomechanical 3-D finite element modeling of the human

breast using MRI data,” IEEE Transactions on Medical

Imaging, vol. 20, no. 4, pp. 271-279, 2001.

N. V. Rviter, T. O. Muller, R. Stotzka, H. Gemmeke, J. R.

Reichenba, and W. A. Kaiser, “Automatic image matching

for breast cancer diagnostics by a 3D deformation model of

the Mamma,” Biomed. Tech. (Berl), 47 Suppl1 Pt2, pp. 644-

, 2002.

P. Pathmanathan, D. Gavaghan, J. Whiteley, S. M. Bredy,

M. Nash, P. Nielsen, and V. Rajagopal, “Predicting tumor

location by simulating large deformations of the breast using

a 3D finite element model and nonlinear elasticity,” Proc.

MICCAI2004, LNCS3217, Springer-Verlag, pp. 217-224,

V. Rajagopal, P. M. F. Nielsen, and M. P. Nash,

“Development of a three dimensional finite element model

of breast mechanics,” Proceedings of the 26th Annual

ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009

International Conference of the IEEE EMBS, San

Francisco, CA, USA, 1-5 Sept. 2004.

N. V. Ruiter, R. Stotzka, T. O. Muller, H. Gemmeke, J. R.

Reichenbach, and W. A. Kaiser, “Model-Based registration

of X-Ray Mammograms and MR images of the female

breast,” IEEE Transactions on Nuclear Science, vol. 53,

no. 1, pp. 204-211, Feb. 2006.

V. Vuskovic and M. Kauer, “In vivo-measurement of elasto

mechanical properties of soft biological tissue,” in

European Medical and Biological Engineering Conference,

Vienna, Austria, 1999.

R. D. Howe, “Identification of constitutive nonlinear

constitutive law parameters of breast tissue,” in Summer

Bioengineering Conference, Vail, Colorado, 22-26 June

N. Ruiter, “Registration of X-Ray Mammograms and MR-

volumes of the female breast based on simulated

Mammographic deformation.” PhD thesis, pp. 55-74,

University of Mannehim, 2003.

D. C. Sullivan, C. A. Beam, S. M. Goodman, and D. L.

Watt, “Measurement of force applied during

Mammography,” Radiology, vol. 181, no. 2, pp. 355-357,

P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern,

“Breast tissue stiffness in compression is correlated to

histological diagnosis,” Tech. Rep., Harward BioRobotics

Laboratory, Harward University, Cambridge, Mass, USA,

A. R. Mijar, J. S. Arora, “An Augmented Lagrangian

optimization method for conact analysis problem, 1:

formulation and algorithm,” Struct Multidisc Optim, vol. 28,

pp. 99-112, 2004.

E. Y. K. Ng and N. M. Sudharsan, “An improved three

dimensional direct numerical modeling and thermal analysis

of a female breast with tumor,” Proc. Instn Mech Engrs,

vol. 215, no. 1, pp. 25-37, 2001.

T. Yahara, T. Koga, S. Yoshida, S. Nakagawa, H. Deguchi,

and K. Shirouzu, “Relationship between microvessel density

and thermographic hot areas in breast cancer,” Surg Today,

vol. 33, pp. 243–248, 2003.

M. Gautherie, Y. Quenneville, and C. M. Gros, “Metabolic

heat production growth rate and prognosis of early breast

carcinomas,” Biomedicine, vol. 22, pp. 328–336, 1975.

W. B. Nickell, J. Skelton, “Breast fat and fallacies: more

than 100 years of anatomical fantasy,” J of Hum Lact, vol.

, no. 2, pp. 126-130, 2005.

N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C.

Singer, and G. Newstead, “Fatty and Fibroglandular tissue

volumes in the breast of women 20-83 years old:

comparison of X-Ray Mammography and computer-assisted

MR imaging,” AJR, vol. 168, no. 2, pp. 501-6, 1997.

S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric

properties of biological tissues: II. Measurements in the

frequency range 10 Hz to 20 GHz ,” Phys. Med. Biol.,

vol.41, no. 41, pp. 2251-2269, 1996.

X. Li and S. C. Hagness, “A confocal microwave imaging

algorithm for breast cancer detection,” IEEE Microwave

Wireless Compon. Lett., vol. 11, no. 3, pp. 130–132, Mar.

M. Lazebnik, L. McCarteney, D. Popovic, C. B. Watkins,

M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H.

Booske, M. Okoniewsky, and S. C. Hagness, “A large-scale

study of the ultrawideband microwave dielectric properties

of normal breast tissue obtained from reduction surgeries,”

Phys. Med. Biol., vol. 52, pp. 2637-2656, 2007.

M. Lazebnik, L. McCarteney, D. Popovic, L. McCarteney,

C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T.

Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew,

J. H. Booske, M. Okoniewsky, and S. C. Hagness, “A large-

scale study of the ultrawideband microwave dielectric

properties of normal, benign and malignant breast tissues

obtained from cancer surgeries,” Phys. Med. Biol., vol. 52,

pp. 6093-6115, 2007.

B. Bocquet, A. Mamouni, M. Hochedez, J. C. Van de Velde,

and Y. Leroy, “Visibility of local thermal structures and

temperature retrieval by microwave radiometry,” Elettronics

Letters, vol. 22, no. 3, pp. 120–121, 1986.

P. C. Myers, N. L. Sadowsky, and A. H. Barrett

“Microwave Thermography: Principles, Methods, and

Clinical Applications,” J. Microwave Power, vol. 14, no. 2,

pp. 105-115, 1979.

D. V. Land, S. M. Fraser, and R. D. Shaw “A review of

clinical experience of microwave Thermography,” J. Med.

Eng. Tech., pp. 109-113, 1986.

S. Mizushina, Y. Hamamura, and T. Sugiura “A three-band

microwave radiometer system for noninvasive measurement

of the temperature at various depths,” IEEE MTT-S Digest.,

vol. 86, no. 1, pp. 759-762, 1986

Downloads

Published

2022-06-17

How to Cite

[1]
S. . Iudicello and F. . Bardati, “Functional Imaging of Compressed Breast by Microwave Radiometry”, ACES Journal, vol. 24, no. 1, pp. 64–71, Jun. 2022.

Issue

Section

General Submission