Numerical Electromagnetic Analysis of GSM Tower under the Influence of Lightning Over-voltage

Authors

  • M. O. Goni Faculty of Engineering, Khulna University of Engineering & Technology, Bangladesh
  • M. S. I. Hossaini Faculty of Engineering, Khulna University of Engineering & Technology, Bangladesh

Keywords:

Numerical Electromagnetic Analysis of GSM Tower under the Influence of Lightning Over-voltage

Abstract

In the last twenty years, the widespread use of sensitive electronic devices in telecommunication systems and power systems has increased the interest in transients, in particular those caused by lightning (direct and/or indirect) strokes. Lightning over-voltage causing unpredictable and accidental interruption in these systems is a very important factor also in telecommunication systems and transmission lines. So the electromagnetic interference (EMI) analysis of different communication towers under the influence of lightning over-voltage on tall structures is necessary to avoid these unexpected interruptions. This paper presents a numerical electromagnetic simulation of direct lightning stroke for the EMI analysis of a GSM tower utilizing Method of Moments. This analysis is also a primary factor and can give approximate solution, helpful for correct EMC design of transient protection circuits for GSM base station.

Downloads

Download data is not yet available.

References

S. Podgorski and J. A. Landt, “Three dimensional

time domain modeling of lightning,” IEEE Trans.

Power Delivery, vol. 2, pp. 931–938, July 1987.

R. Moini, B. Kordi, and M. Abedi, “Evaluation of

LEMP effects on complex wire structures located

above a perfectly conducting ground using electric

field integral equation in time domain,” IEEE Trans.

Electromagn.Compat., vol. 40, pp. 154-162, May

E. K. Miller, A. J. Poggio, and G. J. Burke, “An

integro-differential technique for time-domain

analysis of thin wire structures,” J. Comput. Phys.,

vol. 12, pp. 24-48, 1973.

R. Moini, B. Kordi, and M. Abedi, “Evaluation of

LEMP effects on complex wire structures located

above a perfectly conducting ground using electric

field integral equation in time domain,” IEEE Trans.

Electromagn. Compat., vol. 40, pp. 154-162, May

R. Moini, B. Kordi, G. Z. Rafi, and V. A. Rakov, “A

new lightning return stroke model based on antenna

theory,” J. Geophys. Res., vol. 105, no. D24, pp. 29

–29 702, 2000.

G. J. Burke and A. J. Poggio, “Numerical

electromagnetic code (NEC) - method of moments,”

in Technical Document 116 . San Diego: Naval

Ocean Systems Center, 1980.

F. Heidler and K. Muller, “LEMP calculations with

the traveling current source model,” in Proc. Int.

Conf. Lightning Static Electricity, Bath, U. K. , Sept.

S. Cristina and A. Orlandi, “Lightning channel’s

influence on currents and electromagnetic fields in a

building struck by lightning,” in Proc. IEEE Int.

Symp. Electromagn. Compat., Washington, D.C., pp.

–342, Aug. 1990.

J. C. Chai, H. A. Heritage, and R. Briet,

“Electromagnetic effects of the four-tour supported

catenary wires array lightning protection system,” in

Proc. 16th Int. Aerospace Ground Conf. Lightning

Static Electricity, Mannheim, CA, pp. 377–386, May

R. Moini, B. Kordi, G. Z. Rafi, and V. A. Rakov, “A

new lightning return stroke model based on antenna

theory,” J.Geophys. Res., vol. 105, no. 29, pp. 693-

, 702, 2000.

B. Kordi, R. Moini, and V. A. Rakov, “Comment on

‘Return stroke transmission line model for stroke

speed near and equal that of light’ by R.

Thottappillil, J. Schoene, and M. A. Uman,”

Geophys. Res. Lett. , 29, 10, art. no. 1369,

1029/2001GL014602, 2002.

M. Van Blaricum and E. K. Miller, “TWTD–A

computer program for time-domain analysis for thin-

wire structures,” Lawrence Livermore National

Laboratory, Rept. UCRL-51277, 1972.

M. Ishii and Y. Baba, “Numerical electromagnetic

field analysis of tower surge response,” IEEE Trans.

Power Delivery, vol. 12, pp. 483–488, Jan. 1997.

Y. Baba and M. Ishii, “Numerical electromagnetic

field analysis on lightning surge response of tower

with shield wire,” IEEE Trans. Power Delivery , vol.

, pp. 1010–1016, Apr. 2000.

Y. Baba, M. Ishii, and R. K. Pokharel, “Numerical

electromagnetic analysis of lightning induced

voltages associated with lightning attached to tall

structure,” in Proc. 26th Int. Conf. Lightning

Protection, Cracow, Poland, pp. 149–154, Sep.

Y. Baba and M. Ishii, “Numerical electromagnetic

field analysis of lightning current in tall structures,”

IEEE Trans. Power Del., vol. 16, pp. 324 -328, April

Y. Baba and M. Ishii, “Characteristics of

electromagnetic return-stroke models,” IEEE Trans.

EMC, vol. 45, no. 1, pp. 129-135, Feb. 2003.

G. J. Burke and A. J. Poggio, “Numerical

electromagnetic code (NEC) - Method of moments,”

Naval Ocean Systems Center, San Diego, CA, Tech.

Doc. 116, 1980.

V. A. Rakov and M. A. Uman, “Review and

evaluation of lightning return stroke models

including some aspects of their application,” IEEE

ACES JOURNAL, VOL. 24, NO. 3, JUNE 2009

Trans. Electromagn. Compat., vol. 40, pp. 403-426,

Nov. 1998.

R. F. Harrington, “Field computation by Moment

Methods,” New York: IEEE & Wiley, 1993.

V. A. Rakov and M. A. Uman, “Lightning Physics

and effects,” Dept. of Electrical & Computer

Engineering, University of Florida.

Mini NEC, software available through Artech House

Publishers, 685 Canton Street, Norwood, MA 02062.

E. H. Newman and D. M. Pozar, “Electromagnetic

Modeling of Composite Wire and Surface

Geometries,” IEEE Trans. Antennas Prop., vol. AP-

, pp. 784-789, Nov. 1978.

D. R. Wilton and S. U. Hw u, “Junction Code User’s

Manual,” Naval Ocean Systems Center, San Diego,

CA, NOSC Tech. Document 1324, Aug. 1988.

Thin Wire Time Domain Code (TWTD), contact G.

J. Burke, Lawrence Livermore National

Laboratories, Livermore, CA.

Wire-MoM, method of moments program for wire

structures, Jan Carlsson, SP.

F. Rachidi, W. Janischewskyj, A. M. Hussein, C. A.

Nucci, S. Guerrieri, B. Kordi, and J. S. Chang,

“Current and EM field associated with lightning-

return strokes to tall towers,” IEEE Trans.

Electromagn. Compat., vol. 43, no. 3, pp. 356-367,

Aug. 2003.

T. Yamada, A. Mochizuki, J. Sawada, T. Kawamura,

A. Ametani, M. Ishii, and S. Kato, “Experimental

evaluation of a UHV tower model for lightning surge

analysis,” IEEE Trans. Power Del. , vol. 10, no. 1,

pp. 393–402, Jan. 1995.

J. A. Gutie ́rrez, R. P. Moreno, J. L. Naredo, J. L.

Berm ́udez, M. Paolone, C. A. Nucci, and F. Rachidi,

“Nonuniform transmission tower model for lightning

transient studies,” IEEE Trans. Power Del., vol. 19,

no. 2, pp. 490–496, Apr. 2004.

A. Ametani, Y. Kasai, J. Sawada, A. Mochizuki, and

T. Yamada, “Frequency-dependent impedance of

vertical conductors and a multiconductor tower

model,” Proc. IEE Gener. Transm. Distr., vol. 141,

pp. 339– 345, Jul. 1994.

G. Diendorfer and M. A. Uman, “An improved

return stroke model with specified channel-base

current,” J. Geophys. Res., vol. 95, no. D9, pp.

–13644, 1990.

Y. Baba, S. Miyazaki, and M. Ishii, “Reproduction of

lightning electromagnetic field waveforms by

engineering model of return stroke,” IEEE Trans.

Electromagn. Compat ., vol. 46, pp. 130–133, Feb.

V. Cooray, “On the accuracy of several

approximation theories used in quantifying the

propagation effects on lightning generated

electromagnetic fields,” IEEE Trans. Electromagn.

Compat., vol. 56, no. 7, pp. 1960–1967, July 2008.

Downloads

Published

2022-06-17

How to Cite

[1]
M. O. . Goni and M. S. I. . Hossaini, “Numerical Electromagnetic Analysis of GSM Tower under the Influence of Lightning Over-voltage”, ACES Journal, vol. 24, no. 3, pp. 344–351, Jun. 2022.

Issue

Section

General Submission