Automatic Calculation of Band Diagrams of Photonic Crystals Using the Multiple Multipole Method

Authors

  • Jasmin Smajic Laboratory for Electromagnetic Fields and Microwave Electronics Swiss Federal Institute of Technology ETH-Zentrum, Gloriastrasse 35, CH-8092 Zürich, Switzerland
  • Christian Hafner Laboratory for Electromagnetic Fields and Microwave Electronics Swiss Federal Institute of Technology ETH-Zentrum, Gloriastrasse 35, CH-8092 Zürich, Switzerland
  • Daniel Erni Laboratory for Electromagnetic Fields and Microwave Electronics Swiss Federal Institute of Technology ETH-Zentrum, Gloriastrasse 35, CH-8092 Zürich, Switzerland

Keywords:

Automatic Calculation of Band Diagrams of Photonic Crystals Using the Multiple Multipole Method

Abstract

In the framework of photonic crystal’s band structure calculations, we present a novel way – based on several advanced techniques for searching and tracing eigenvalues with the multiple multipole program – to compute these diagrams automatically, efficiently, and with a high accuracy. Finally, we validate the results for some well known test cases.

Downloads

Download data is not yet available.

References

E. Yablanovich, “Inhibited spontaneous emission in solid-state physics and

electronics”, Phys. Rev. Lett., 58, pp. 2059-2062, 1987.

J. Mills, “Photonic crystals head toward the marketplace”, Nov. 2002,

http://optics.org/articles/ole/7/11/1/1 ,

K. Busch, S. John, “Liquid-crystal photonic-band-gap materials: the

tunable electromagnetic vacuum”, Phys. Rev. Letters, 83, pp. 967-970,

A. Figotin, Y. A. Godin, “two-dimensional tunable photonic crystals”,

Phys. Rev. B, 57, pp. 2841-2848, 1998.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra,

“Switchable orthorombic F photonic crystals formed by holographic

polymerization-induced phase separation of liquid crystal”, Optics Express,

, pp. 1074-1082, 2002.

K. Sakoda, “Optical Properties of Photonic Crystals”,Springer, Berlin, 2001.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Molding the Flow of

Light”, Princeton University Press, 1995.

K. M. Ho, C. T. Chan, and, C. M. Soukolis, “Existance of a Photonic Gap

in Periodic Dielectric Structures”, Phys. Rev. Lett., 65, pp. 3152-3155,

S. G. Johnson, and J. D. Joannopoulos, “Block-iterative frequency-domain

methods for Maxwell’s equations in a planewave basis”, Opt. Express, 8,

pp. 173-190, 2001.

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L.

Alerhand, “Accurate theoretical analysis of photonic band-gap materials”,

Phys. Rev. B, 48, pp. 8434-8437, 1993.

H. S. Söuzüer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence

problems with the plane-wave method”, Phys. Rev. B, 45, pp. 13962-

, 1992.

D. Hermann, M. Frank, K. Busch and P. Wölfle, “Photonic band structure

computations”, Opt. Express, 8, pp. 167-172, 2001.

K. Ohtaka, T. Ueta, and K. Amemiya, “Calculation of photonic bands

using vector cylindrical waves and reflectivity of light for an array of

dielectric rods”, Phys. Rev B, 57, pp. 2550-2568, 1998.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for

electromagnetic waves”, Phys. Rev B, 51, pp. 16 635-16 642, 1995.

M. Qui and S. He, “A non-orthogonal finite-difference time-domain

method for computing the band structure of a two-dimensional photonic

crystal with dielectric and metallic inclusions”, J. Appl. Phys., 87, pp.

-8275, 2000.

J. B. Pendry and A. MacKinnon, “Calculation of Photon Dispersion

Relations”, Phys. Rev. Lett., 69, pp. 2772-2775, 1992.

W. Axmann and P. Kuchment, “An efficient finite element method for

computing spectra of photonic and acoustic band-gap materials”, J.

Comput. Phys., 150, pp. 468-481, 1999.

ACES JOURNAL, VOL. 18, NO. 3, NOVEMBER 2003

P. A. Knipp, and T. L. Reinecke, “Boundary-element calculations of

electromagnetic band-structure of photonic crystals”, Physica E, 2, pp.

-924, 1998.

Ch. Hafner, “Post-modern Electromagnetics Using Intelligent MaXwell

Solvers”, John Wiley & Sons, 1999.

Ch. Hafner, “MaX-1: A visual electromagnetics platform”, John Wiley &

Sons, 1998.

P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional

square and hexagonal lattices”, Phys. Rev. B, 46, pp. 4969-4972, 1992.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-

dimensional systems: the triangular lattice”, Phys. Rev. B, 44, pp. 8565-

, 1991.

Ch. Hafner, J. Smajic, The Computational Optics Group Web Page (IFH,

ETH Zurich), http://alphard.ethz.ch/.

I. N. Vekua, “New methods for solving elliptic equations”, North-Holland,

Amsterdam, 1967.

G. H. Golub and C. F. Van Loan, “Matrix Computations”, John Hopkins

University Press, Baltimore, 1996.

F. G. Bogdanov, D. D. Karkashadze, and R. S. Zaridze, in “Generalized

Multipole Techniques for Electromagnetic and Light Scattering”, edited by

T. Wriedt, pp. 143-172, Elsevier, Amsterdam, 1999.

K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K.

Hirao, “Photonic bands of metallic systems. I. Principle of calculation and

accuracy”, Phys. Rev. B, 64, pp. 045116, 2001.

E. Moreno, D. Erni and Ch. Hafner, “Band structure computations of

metallic photonic crystals with the multiple multipole method”, Phys. Rev.

B, 65, pp. 155120: 1-10, 2002.

S. G. Johnson and J. D. Joannopoulos, The MIT Photonic-Bands Package

home page, http://ab-initio.mit.edu/mpb/ .

R. D. Meade, K.l D. Brommer, A. M. Rappe and J. D. Joannopoulos,

“Photonic band states in periodic dielectric materials”, Phys. Rev. B, 44,

pp. 13 772 – 13 774, 1991.

E. Moreno, D. Erni and Ch. Hafner, “Modeling of discontinuities in

photonic crystal waveguides with the multiple multipole method”, Phys.

Rev. B, 66, pp. 036618, 2002

Downloads

Published

2022-06-18

How to Cite

[1]
J. . Smajic, C. . Hafner, and D. . Erni, “Automatic Calculation of Band Diagrams of Photonic Crystals Using the Multiple Multipole Method”, ACES Journal, vol. 18, no. 3, pp. 172–180, Jun. 2022.

Issue

Section

General Submission